LONDON R E S O R T

The London Resort Development Consent Order

BC080001

Environmental Statement Volume 2: Appendices

Appendix 13.5 – Subtidal Benthic Ecology Survey

Document reference: 6.2.13.5 Revision: 00

December 2020

Planning Act 2008 The Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009 Regulation 5(2)(a) The Infrastructure Planning (Environmental Impact Assessment) Regulations 2017 Regulation 12(1)

Revisions

Revision	Description	Issued by	Date	Approved by
00	Issue for DCO Submission	RA	24/12/2020	APEM/MH

The Environmental Dimension Partnership Ltd Tithe Barn Barnsley Park Estate Barnsley Cirencester Gloucestershire GL7 5EG

Executive Summary

APEM Ltd was commissioned by the Environmental Dimension Partnership Ltd (EDP) on behalf of the London Resort Holding Company to undertake a series of marine ecology surveys to inform an Ecological Impact Assessment (EIA) for the London Resort Proposed Development. This report provides details of subtidal benthic ecology surveys conducted in August and September 2020.

Subtidal surveys were conducted off the western shore of the Swanscombe Peninsula (the 'Kent Project Site') and at the Port of Tilbury Jetty (the 'Essex Project Site'), with sampling conducted at a total of 22 stations.

Due to the substrate present at different locations two surveys were undertaken, with subtidal samples collected using a 0.1 m² mini-Hamon grab for the first survey and a 0.1 m² Day grab for the second survey. A further sample was collected at each station for Particle Size Analysis (PSA) and chemistry analysis. Consultation was held with the Environment Agency (EA) to agree the survey array, survey methods and an appropriate chemical analysis suite ensuring inclusion of chemicals that the EA have previously investigated, or are currently investigating locally (in light of local Thames water quality and biota issues).

Sediment type within the Kent survey area was found to be fairly homogenous with eight of the 14 stations classified as Gravelly Mud (the other six stations were classified as Muddy Sandy Gravel (two stations); Sandy Mud (two stations); Muddy Gravel; and Mud). This was also the case for the Essex survey area with four of the eight stations classified as Muddy Sand (other stations were classified as either Muddy Sand, Gravelly Muddy Sand or Gravel).

The tentacled lagoon worm *Alkmaria romijni* was recorded at three stations (Stations 3, 6 and 22) within the Kent survey area. This species is protected under the Wildlife and Countryside Act 1981 and is a protected feature of the Swanscombe Marine Conservation Zone. Densities of tentacled lagoon worm were relatively low with 20 individuals m⁻² recorded at Stations 3 and 6 and 40 individuals m⁻² recorded at Station 22.

Six non-native species were recorded during the subtidal survey (*Cordylophora caspia, Eusarsiella zostericola, Magallana gigas, Melita nitida, Palaemon macrodactylus and Ruditapes philippinarum*) and *Austrominius modestus* was recorded within wall scrape samples only. A total of nine species considered to be cryptogenic were recorded (*Alitta succinea, Amphibalanus improvisus, Apocorophium lacustre, Boccardiella ligerica, Eteone lighti, Monocorophium insidiosum, Polydora cornuta, Teredo navalis and Tubificoides heterochaetus*).

Overall, the habitats recorded at the Kent and Essex project sites are considered to be widespread within the Thames Estuary and with the exception of *A. romijni* which is restricted to the Swanscombe MCZ area, species recorded are considered to be widespread within the wider mid and lower Thames Estuary.

Contents

Re	evisions	i
E۶	ecutive Summary	iii
Сс	ontents	v
Li	st of Tables	vii
Li	st of Figures	ix
G	ossary	xi
1	Chapter One Introduction	1
2	Chapter Two 🔶 Methodology	3
3	Chapter Three 🔶 Results	11
4	Chapter Four 🔶 Summary	23
Re	ferences	27
A	opendices	29
A	opendix 1.0 Figures	31
A	opendix 2.0 Sample locations	47
A	opendix 3.0 List of Chemicals Analysed	51
A	opendix 4.0 Subtidal sample photographs	55
A	opendix 5.0 Wall scrape sample photographs	63
5	Appendix 6.0 Two-stage analysis of resemblance matrices for different transformation options	67
6	Appendix 7.0 Particle size data for subtidal stations	71
7	Appendix 8.0 Macrobenthic data for subtidal grab samples	79
8	Appendix 9.0 Macrobenthic data for wall scrape samples	83
9	Appendix 10.0 Biomass data for subtidal grab samples	87
10	Appendix 11.0 Biomass data for major groups	91
11	Appendix 12.0 SIMPER analysis results	95
12	Appendix 13.0 Subtidal sediment – chemical concentrations against thresholds	101
13	Appendix 14.0 Additional sediment chemistry data	122
		V

List of Tables

Table 2-1: Data and tidal information for the subtidal survey days.	3
Table 2-2: Data and tidal information for the subtidal survey days.	7
Table 3-1: Summary particle size data from each Kent and Essex subtidal sample station.	11
Table 3-2: Summary particle size data from each Kent and Essex subtidal sample station.	14
Table 3-3: Summary particle size data from each Kent and Essex subtidal sample station.	19

List of Figures

Figure 13.5.1: Subtidal survey area and grab locations for Kent Project Site.	33
Figure 13.5.2: Subtidal survey area and grab locations for Essex Project Site.	34
Figure 13.5.3: Dalby Venture, used for the first subtidal survey.	35
Figure 13.5.4: Emilia D, used for the second subtidal survey.	35
Figure 13.5.5: Folk sediment classification pyramid (Folk 1954).	36
Figure 13.5.6: Abundance of <i>A. rominji</i> recorded from grab samples within the Kent survey are	ea. 37
Figure 13.5.7: Total wet weight biomass in grams at each subtidal grab station within the Ken survey area.	t 38
Figure 13.5.8: Total wet weight biomass in grams at each subtidal grab station within the Ken survey area with values for molluscs at Station 6 and 11 removed.	t 39
Figure 13.5.9: Total wet weight biomass in grams at each subtidal grab station within the Esse survey area.	ex 40
Figure 13.5.10: Cluster analysis dendrogram with SIMPROF for subtidal grab invertebrate abundance. Black lines show groupings at ≥5%.	41
Figure 13.5.11: Cluster analysis dendrogram with SIMPROF for subtidal grab invertebrate abundance. Stations are categorised based on survey area. Black lines show groupings at ≥5%	ő 42
Figure 13.5.12: Multidimensional Scaling ordination plot for subtidal grab invertebrate abundance.	43
Figure 13.5.13: Multidimensional Scaling ordination plot for subtidal grab invertebrate abundance. Stations are categorised based on survey area.	44
Figure 13.5.14: Subtidal sample habitat locations within the Kent survey area.	45
Figure 13.5.15: Subtidal sample habitat locations within the Essex survey area.	46

Glossary

Analytical Quality Control
Benzene, Toluene, Ethylbenzene and Xylene
Chemical Action Level 1
Chemical Action Level 2
Clean Seas Environmental Monitoring Programme
Environmental Agency
Environmental Assessment Criteria
Environmental Impact Assessment
Effects Range Low
Gasoline Range Organics
Industrial Denatured Alcohol
Interim Sediment Quality Guidelines
Marine Conservation Zone
MultiDimensional Scaling
Marine Management Organisation
Methyl Tert-Butyl Ether
North-East Atlantic Marine Biological Analytical Quality Control
Polycyclic Aromatic Hydrocarbons
Polychlorinated biphenyls
Probable Effects Level
Particle Size Analysis
Threshold Effects Level
Taxonomic Discrimination Protocol
Total Petroleum Hydrocarbons
Temporary River Works License
World Register of Marine Species

Chapter One Introduction

BACKGROUND

- 1.1. APEM Ltd was commissioned by the Environmental Dimension Partnership Ltd (EDP) on behalf of the London Resort Holding Company to undertake subtidal benthic ecology surveys to provide site characterisation data to inform the marine ecology assessment for an Environmental Impact Assessment (EIA) for the London Resort Project. The overall survey programme has provided site-specific data for intertidal fish, benthos (intertidal and subtidal), saltmarsh and sediment chemistry.
- 1.2. This report provides the methodology of the subtidal benthic surveys which were conducted in August and September 2020.

SURVEY OBJECTIVES

1.3. The objective of the surveys was to characterise the subtidal benthic assemblages present within the survey area in August and September 2020. Samples were analysed to provide data for biota, sediment/habitat type and sediment chemistry.

Chapter Two Methodology

SURVEY AREA

2.1 The survey area included both the 'Kent Project Site' (Figure 13.5.1) and the 'Essex Project Site' (Figure 13.5.2) of the London Resort.

SURVEY TIMINGS

- 2.2 The subtidal surveys were conducted between the 25th and 26th August and on 29th September 2020 with tide times provided in Table 2-1.
- 2.3 Two surveys were conducted as a number of stations could not be sampled using the 0.1 m² mini-Hamon grab deployed during the first survey due to the soft sediment present. Consequently, these stations were sampled with a 0.1 m² Day grab during the second survey.

Table 2-1: Tide information for the subtidal survey days.

Date	Low tide		High tide		Low tide		High tide	
	Time	Height	Time	Height	Time	Height	Time	Height
	(BST)	(m)	(BST)	(m)	(BST)	(m)	(BST)	(m)
25/08/2020	0:00	0.4	6:17	6.2	12:09	0.8	18:27	6.2
26/08/2020	0:44	0.6	7:07	5.9	15:56	1.0	19:22	5.9
29/09/2020	6:14	1.1	0:01	6.1	18:43	6.0	12:24	6.0

LICENCES AND PERMISSIONS

- 2.4 A Temporary River Works Licence (TRWL) was provided by the Port of London Authority. The works were exempt from a Marine Management Organisation (MMO) Marine Licence and an exemption form was completed (Issued: 21/08/2020).
- 2.5 The survey design for the subtidal benthic ecology survey was approved by the Environment Agency prior to deployment (approved: 24/06/2020).

SURVEY VESSEL

2.6 The subtidal sampling was conducted using the 22 m survey vessel Dalby Venture for the first survey and the 19 m vessel Emilia D. for the second survey (Figure 13.5.3 and Figure 13.5.4). Survey operations mobilised from the Town Hall wharf at Gravesend and from Greenwich.

SURVEY DESIGN

2.7 A total of 22 grab samples were collected in total over the course of both surveys (Appendix 1.0; Figure 13.5.1 and Figure 13.5.2); coordinates are provided in Appendix 2.0). Samples for chemical analysis were collected at each of the benthic sample stations.

SURVEY METHODOLOGY

- 2.8 The first survey was conducted using a 0.1 m² mini-Hamon grab (due to large areas of mixed substrate (mud, sand and gravel) within the survey area). At many of the stations near Bell Wharf (Stations 3 to 9) sediment was too soft for the mini-Hamon grab to operate effectively, so they were sampled during a second survey using a 0.1 m² Day grab. All grab sampling followed best practice guidance (e.g. Ware & Kenny 2011).
- 2.9 At each station a single grab sample was taken for biotic analysis. A second sample was taken for Particle Size Analysis (PSA) and sediment chemistry. These samples were transferred to a suitable container labelled both internally and externally and kept cool before transportation to a third-party laboratory.
- 2.10 All samples were assessed on retrieval for suitability. Those showing obvious evidence of the grab not operating correctly or having low sample volumes (i.e. <5 litres for the mini-Hamon grab, less than 7 cm deep for mud or 5 cm deep for sand for the Day grab (Davies *et al.* 2001; Ware & Kenny 2011)) were rejected and another sampling attempt was made. At each station up to five attempts were made to collect a valid sample. If after five attempts a valid sample could not be collected, then a decision was made whether to relocate or abandon the station.
- 2.11 Grabs were photographed with notes made on colour, smell, redox layer, texture and surface features. Information relating to the success rates for grab deployment and volumes of samples are provided below.
- 2.12 Biological samples were processed in the field in accordance with the guidance provided in Cooper & Mason (2017). Samples were sieved using a 0.5 mm sieve and all material retained on the sieves was fixed with 4% buffered formaldehyde solution in seawater and placed in sample containers (labelled inside and outside) following guidance in Ware & Kenny (2011) and Davies *et al.* (2001). Once the sieved samples were labelled and preserved all apparatus and sieves were thoroughly cleaned to prevent cross-contamination before moving to the next station. The sample was securely stored prior to the deployment of the grab at the next sampling station to ensure a clear working area and prevent potential damage or contamination of the sample. The samples were then transported to APEM's Marine Biolabs for analysis.
- 2.13 A further replicate grab sample was taken at each station to obtain an appropriate sediment subsample of 500-1,000 g for PSA which was transferred to a suitable container (labelled both internally and externally) and transported to a third-party laboratory for analysis.

- 2.14 For chemical analysis approximately 2.68 kg of sediment was collected; 1,180 g was collected using a metal spoon and put into glass containers for analysis of a range of chemicals (see Appendix 3.0) and 1,500 g was placed in plastic containers for analysis of asbestos and cyanide (free/total) using a plastic scoop.
- 2.15 The PSA and sediment chemistry samples were then kept cool (with the exception of some sediment that needed to be frozen for specific analyses) before being subsequently transported to a third-party laboratory for analysis.

LABORATORY PROCESSING

Microbiota

- 2.16 Sample analysis was conducted according to APEM's standard operating procedure for marine benthic sample analysis which is fully compliant with the North-East Atlantic Marine Biological Analytical Quality Control (NMBAQC) Scheme's Processing Requirement Protocol (PRP), (Worsfold *et al.* 2010).
- 2.17 To standardise the sizes of organisms and improve sorting efficiency, samples were sieved through a stack of sieves of 4.0, 2.0, 1.0 and 0.5 mm meshes in a fume cupboard following UKTAG guidance for benthic invertebrate sample analysis for transitional waters (WFD-UKTAG 2014). All biota retained in the sieves were then extracted under low power microscopes, identified and enumerated, where applicable.
- 2.18 Taxa were identified to the lowest practicable taxonomic level (usually species), using appropriate taxonomic literature. For certain taxonomic groups (e.g. nemerteans, nematodes, and certain oligochaetes), higher taxonomic levels were used due to the widely acknowledged lack of appropriate identification tools for these groups. The NMBAQC Scheme's Taxonomic Discrimination Protocol (TDP) (Worsfold *et al.* 2010), which gives guidance on the most appropriate level to which different marine taxa should be identified, was adhered to for the laboratory analysis. Where required, specimens were also compared with material maintained within the laboratory reference collection. Nomenclature followed the World Register of Marine Species (WoRMS; WoRMS Editorial Board 2017), except where more recent published literature that had not yet been incorporated into the WoRMS list was known to exist.
- 2.19 All samples were subject to internal quality assurance procedures and, following analysis, 10% of samples were subject to formal Analytical Quality Control (AQC). For archiving purposes, all samples were stored in 70% industrial denatured alcohol (IDA) solution. At least one example of each taxon recorded from the surveys was set aside for inclusion in APEM's in-house reference collection. This collection acts as a permanent record of the biota recorded.

Biomass estimations

2.20 Biomass analysis was undertaken according to APEM's standard operating procedure and the NMBAQC Scheme guidance and TDP (Worsfold *et al.* 2010). APEM used a non-destructive biomass procedure that is fully compliant with the methods outlined in the

Clean Seas Environmental Monitoring Programme (CSEMP) Green Book (CSEMP 2012). Animals were blotted dry before transfer to a tared analytical balance. Biomass values were recorded as blotted wet-weight, +/- 0.0001 g. Taxa weighing less than 0.0001 g were given a nominal weight of 0.0001 g. Barnacles, ascidians, cnidarians and non-countable taxa were not weighed.

2.21 Biomass was determined at species level and specimens set aside for inclusion in the reference collection were weighed separately with their weight being added to the relevant group.

Particle size analysis

2.22 PSA was performed in accordance with NMBAQC Scheme best practice guidance for PSA for supporting biological analysis (Mason 2016), with the modification that the wet separation was performed at 2.0 mm rather than 1.0 mm, to determine the 'gravel' to 'sand and mud' proportions by weight. A combination of dry sieving and laser diffraction was used due to the range of particle sizes present in the samples.

Sediment chemistry

2.23 A list of chemicals to be analysed was determined following consultation with the Environment Agency and additional project-specific requirements (see Appendix 3.0). Chemical analyses were conducted according to UKAS accredited methods where appropriate by a Marine Management Organisation (MMO) approved laboratory.

Data analysis

Macrobiota

- 2.24 Before analysis, all data were checked for errors. Summary statistics were calculated and outlying values investigated to identify possible data transcription errors. As is standard practice, truncation of the biological data was undertaken before calculation of summary statistics and other statistical analyses (see Table 2-2). Univariate and multivariate analyses were undertaken using the PRIMER software package (Clarke & Warwick 2001).
- 2.25 For analyses based on numbers of individuals, any non-countable taxa and fragments of individuals were also omitted from analysis.

Taxon / Records	Details of truncation performed
Alitta succinea	Fragments removed from sample 20
Corophium volutator	Fragments removed from sample 19
Eteone lighti	Fragments removed from sample 8
Heteromastus filiformis	Fragments removed from samples 4, 9, 11 and 19
Melitia palmata	Fragments removed from sample 9
Monocorophium insidiosum	Fragments removed from sample 4
Nephtys spp.	Fragments removed from sample 18
Tubificoides benedii	Fragments removed from sample 10
Tubificoides diazi	Fragments removed from sample 1
Magallana gigas	Adult and juvenile records combined
Scrobiculara plana	Adult and juvenile records combined

Table 2-2: Data and tidal information for the subtidal survey days.

- 2.26 Biological diversity within a community was assessed based on taxon richness (total number of taxa present) and evenness (considers relative abundances of different taxa). The following metrics were calculated:
 - **Taxon richness:** the total number of taxa in a sample.
 - **Density:** the number of individuals per unit area (e.g. per square metre).
 - Shannon-Wiener Diversity Index (H'(log_e): a widely used measure of diversity accounting for both the number of taxa present and the evenness of distribution of the taxa (Clarke & Warwick 2001).
 - Margalef's species richness (d): a measure of the number of species present for a given number of individuals.
 - **Pielou's Evenness Index (***J'***):** represents the uniformity in distribution of individuals spread between species in a sample. The output range is from 0 to 1 with higher values indicating more evenness or more uniform distribution of individuals.
 - Simpson's Dominance Index (1-λ): a dominance index derived from the probability of picking two individuals from a community at random that are from the same species. Simpson's dominance index ranges from 0 to 1 with higher values representing a more diverse community without dominant taxa.
- 2.27 Multivariate analyses were conducted using resemblance (similarity) matrices. Sample similarity calculations using raw abundance data can easily be dominated by a few highly abundant taxa (Clarke and Warwick 2001), masking the influence of less abundant species. Consequently, a square root transformation was applied to the data prior to the

calculation of Bray-Curtis similarity to reduce the influence of the most numerically dominant taxa, following the recommendations in Clarke & Gorley (2006).

2.28 A two-stage analysis of the resemblance matrices for different transformation options was conducted based on consideration of no transformation, square root 4th transformation, root transformation, + 1) log (x transformation and 'presence/absence', in order of increasing strength of the transformation. Spearman rank correlations of 4th root and Log (x+1) transformation resemblance matrices with the square root transformation resemblance matrix were very close to 1 (0.960 and 0.980 respectively, Appendix 6.0). The strong correlation indicates square root transformation is a robust choice and more severe transformations would correlate more closely with a 'presence/absence' transformation of data.

Cluster Analysis

2.29 Cluster analysis was utilised to provide a visual representation of sample similarity in the form of a dendrogram. Cluster analysis was conducted in conjunction with a SIMPROF (similarity profile) test to determine whether groups of samples were statistically indistinguishable at the 5% significance level, or whether any trends in groupings were apparent. Black lines on the dendrogram indicate statistical distinctions between sampling stations, whilst red lines indicate that the samples were statistically inseparable.

Ordination Analysis using non-Metric Multidimensional Scaling

- 2.30 Non-metric multidimensional scaling (MDS) is a type of ordination method which creates a 2- or 3-dimensional 'map' or plot of the samples from the PRIMER resemblance matrix. The plot generated is a representation of the dissimilarity of the samples (or replicates), with distances between the replicates indicating the extent of the dissimilarity. For example, replicates that are more dissimilar are further apart on the MDS plot. No axes are present on the MDS plots as the scales and orientations of the plots are arbitrary in nature.
- 2.31 Each MDS plot provides a stress value which is a broad-scale indication of the usefulness of plots, with a general guide indicated below (Clarke & Warwick 2001):
 - <0.05 Almost perfect representation of rank similarities;
 - 0.05 to <0.1 Good representation;
 - 0.1 to <0.2 Still useful;
 - 0.2 to <0.3 Should be treated with caution; and
 - >0.3 Little better than random points.

SIMPER

2.32 Where differences between groups of samples were found, SIMPER analysis (in PRIMER) was used to determine which taxa were principally responsible for the differences between the statistically distinct groups of stations.

Particle size analysis

2.33 The PSA data were entered into GRADISTAT (Blott & Pye 2001) to produce sediment classifications, following Folk (1954), (Figure 13.5.5). Summary statistics were also calculated including mean particle size, sorting, skewness and kurtosis (following Blott & Pye 2001).

Habitat allocation

2.34 The invertebrate count data and PSA results, and outputs of the cluster analysis, SIMPROF and SIMPER analysis, were interpreted to allocate habitats to each replicate sample. Habitats were allocated following EUNIS (EEA 2017). Equivalent codes based on Joint Nature Conservation Committee's (JNCC) National Marine Habitat Classification for Britain and Ireland: Version 04.05 (Connor *et al.* 2004) have also been provided (JNCC 2010) in Table 3-1.

3.1 Photographs of subtidal grab and wall scrape samples are provided in Appendices 4.0 and 5.0, respectively. Full PSA data for the subtidal sediments are presented in Appendix 7.0 and summary data are provided in Table 3-1.

PARTICLE SIZE ANALYSIS

Kent Project Site

3.2 Sediment at eight of the 14 subtidal grab stations within the Kent survey area was classified as Gravelly Mud (stations 4, 5, 6, 7, 8, 9, 10 and 22). Stations 11 and 12 were classified as Muddy Sandy Gravel; stations 2 and 13 were classified as Sandy Mud; and stations 1 and 3 were classified as Muddy Gravel and Mud respectively. The majority of stations were classified as Extremely Poorly Sorted with the exception of four stations (2, 11, 12 and 13) which were classified as Very Poorly Sorted, and station 3 which was Poorly Sorted.

Essex Project Site

3.3 Sediment at the majority of the subtidal grab stations within the Essex survey area was classified as Muddy Sand (stations 15, 18, 19 and 21). Stations 16 and 17 were classified as Sandy Mud and Station 20 was classified as Gravelly Muddy Sand. The PSA sample taken from station 14 just south of the Port of Tilbury terminal was classified as Gravel. All stations were classified as Very Poorly Sorted with the exception of station 14 which was Poorly Sorted.

Table 3-1: Summary particle size data from each Kent and Essex subtidal sample station.

Station	Mean particle diameter (μm)	Gravel (%)	Sand (%)	Mud (%)	Folk classification	Sorting
Kent Projec	t Site					
1	4785.0	77.1	9.8	13.1	Muddy Gravel	Extremely Poorly Sorted
2	14.8	0.0	24.7	75.3	Sandy Mud	Very Poorly Sorted
3	10.4	0.0	3.5	96.5	Mud	Poorly Sorted
4	111.6	20.7	22.7	56.6	Gravelly Mud	Extremely Poorly Sorted
5	2274.1	63.6	13.7	22.7	Gravelly Mud	Extremely Poorly Sorted

Station	Mean particle diameter (μm)	Gravel (%)	Sand (%)	Mud (%)	Folk classification	Sorting
6	3508.9	71.9	9.8	18.3	Gravelly Mud	Extremely Poorly Sorted
7	256.8	46.1	11.7	42.2	Gravelly Mud	Extremely Poorly Sorted
8	1998.0	62.7	16.3	21.1	Gravelly Mud	Extremely Poorly Sorted
9	1230.4	52.5	13.3	34.2	Gravelly Mud	Extremely Poorly Sorted
10	62.6	17.7	15.0	67.3	Gravelly Mud	Extremely Poorly Sorted
11	3871.5	64.9	23.2	11.9	Muddy Sandy Gravel	Very Poorly Sorted
12	3853.6	71.1	20.7	8.2	Muddy Sandy Gravel	Very Poorly Sorted
13	27.8	0.0	34.3	65.7	Sandy Mud	Very Poorly Sorted
22	222.1	40.5	12.0	47.5	Gravelly Mud	Extremely Poorly Sorted
Essex Proje	ct Site			_		
14	15225.6	91.1	7.2	1.7	Gravel	Poorly Sorted
15	38.2	0.0	54.8	45.2	Muddy Sand	Very Poorly Sorted
16	30.8	0.0	45.5	54.5	Sandy Mud	Very Poorly Sorted
17	21.3	0.0	33.3	66.7	Sandy Mud	Very Poorly Sorted
18	37.8	0.0	52.5	47.5	Muddy Sand	Very Poorly Sorted
19	49.7	0.0	63.6	36.4	Muddy Sand	Very Poorly Sorted
20	73.9	12.6	51.7	35.7	Gravelly Muddy Sand	Very Poorly Sorted
21	53.2	0.0	63.2	36.8	Muddy Sand	Very Poorly Sorted

Biotic data

Community summary statistics for microbenthic assemblages structure

3.4 The complete benthic dataset for the subtidal grab and wall scrape samples are provided in Appendices 8.0 and 9.0, respectively.

Kent project site

3.5 A total of 38 benthic taxa were identified from the 14 subtidal grab stations of which four were non-countable (e.g. colonial organisms). A total of 4,347 individuals were recorded for the countable taxa. Sessilia was the most abundant taxon recorded within grab samples. The taxon had a total abundance of 1,216 individuals (27.9% of the total number of countable organisms recorded for the subtidal grabs) and a mean density of 868.6 \pm 1,713.9 individuals m⁻². Abundant taxa other than Sessilia were the bay barnacle

Amphibalanus improvisus (959 individuals; mean density of 685 ± 1,655.2 individuals m⁻²), Streblospio spp. (758 individuals; mean density of 541.4 ± 1,285.6 individuals m⁻²), the mud shrimp *Corophium volutator* (505 individuals; mean density of 3607 ± 663.6 individuals m⁻²), the polychaete *Polydora cornuta* (337 individuals; mean density of 240.7 ± 260.5 individuals m⁻²), the pile worm *Alitta succinea* (204 individuals; mean density of 145.7 ± 172.9 individuals m⁻²) and the oligochaete *Tubificoides heterochaetus* (121 individuals; mean density of 86.4 ± 155.5 individuals m⁻²).

3.6 The lowest number of taxa was recorded at station 10 (four taxa) and station 6 had the highest number of taxa (23), (see Table 3-2). The greatest density of individuals was recorded at station 11 with 14,270 individuals m⁻² whilst station 10 had the lowest density with 50 individuals m⁻². Margalef's species richness varied from 1.12 at station 5 to 3.67 at station 8. Pielou's Evenness varied from 0.26 at station 5 (lower evenness was primarily influenced by high numbers of *C. volutator*) to 0.96 at stations 8 and 10 (high evenness due to low or similarly high numbers of most taxa). The Shannon Weiner Diversity index also indicated low diversity at station 10 (value of 1.33), while the highest value was recorded at station 8 (value of 2.39). Simpson's dominance varied from 0.22 at station 5 to 0.95 at station 8. The lower Simpson's dominance values were largely influenced by low numbers of individuals for most taxa and high numbers of *C. volutator* relative to other taxa.

Essex Project Site

- 3.7 A total of 41 benthic taxa were identified from the eight subtidal grab stations of which nine were non-countable (e.g. colonial organisms). A total of 5,020 individuals were recorded for the countable taxa. The oligochaete *Tubificoides benedii* was the most abundant taxon recorded within grab samples. The taxon had a total abundance of 1,752 individuals (34.9% of the total number of countable organisms recorded for the subtidal grabs) and a mean density of 2,190 ± 5,719.6 individuals m⁻². Abundant taxa other than *T. benedii* were *C. volutator* (1,262 individuals; mean density of 1,577.5 ± 3,442.5 individuals m⁻²), *A. improvisus* (939 individuals; mean density of 1,173.8 ± 3,255.7 individuals m⁻²), *P. cornuta* (251 individuals; mean density of 313.8 ± 726.3 individuals m⁻²), *Tharyx* 'species A' (244 individuals; mean density of 305 ± 385.8 individuals m⁻²).
- 3.8 The lowest number of taxa was recorded at station 19 (3 taxa) and station 14 had the highest number of taxa (27 taxa), (see Table 3-2). The greatest density of individuals was found at station 18 with 27,510 individuals m⁻² whilst station 19 had the lowest density with 80 individuals m⁻². Margalef's species richness varied from 1.10 at station 16 to 5.83 at station 14. Pielou's Evenness varied from 0.71 at station 18 (lower evenness was primarily influenced by high numbers of *T. benedii*) to 0.97 at station 20 (high evenness due to low or similarly high numbers of most taxa). The Shannon Weiner Diversity index also indicated low diversity at station 19 (value of 1.00), while the highest value was recorded at station 14 (value of 2.59). Simpson's dominance varied from 0.62 at station 16 to 0.95 at station 20. The lower Simpson's dominance values were largely influenced

by low numbers of individuals for most taxa and high numbers of *T. benedii* relative to other taxa.

Station	Total no. taxa (per station)	No. individuals per m ²	Margalef's species richness (d)	Pielou's Evenness (J')	Shannon Wiener Diversity (H'(log _e))	Simpson's Dominance (1-λ)
Swansco	ombe					
1	8	270	2.10	0.80	1.67	0.79
2	6	590	1.22	0.49	0.88	0.44
3	15	2,960	2.46	0.61	1.64	0.67
4	7	370	1.65	0.71	1.38	0.68
5	7	2,140	1.12	0.26	0.52	0.22
6	23	5,950	3.44	0.50	1.56	0.66
7	7	250	1.84	0.71	1.38	0.65
8	12	180	3.67	0.96	2.39	0.95
9	13	3,290	2.07	0.69	1.78	0.76
10	4	50	1.86	0.96	1.33	0.90
11	15	14,270	1.93	0.48	1.30	0.64
12	13	1,740	2.32	0.73	1.88	0.81
13	9	2,780	1.42	0.53	1.16	0.52
22	15	8,360	2.07	0.53	1.43	0.63
Min	4	50	1.12	0.26	0.52	0.22
Max	23	14,270	3.67	0.96	2.39	0.95
Tilbury						
14	27	11,200	5.83	0.78	2.59	0.86
15	12	900	3.33	0.92	2.29	0.91
16	4	960	1.10	0.78	1.08	0.62
17	13	8,130	2.67	0.95	2.43	0.91
18	10	27,510	1.95	0.71	1.64	0.74
19	3	80	1.34	0.91	1.00	0.77
20	9	180	3.10	0.97	2.13	0.95
21	8	1,240	2.27	0.81	1.69	0.77
Min	3	80	1.10	0.71	1.00	0.62
Max	27	27,510	5.83	0.97	2.59	0.95

Table 3-2: Summary particle size data from each Kent and Essex subtidal sample station.

Wall scrapes

3.9 A total of five taxa made up of 44 individuals were identified from the two wall scrape stations, of which two taxa were non-countable. The barnacle *Austominius modestus* was the most abundant taxon recorded within grab samples. The taxon had a total abundance of individuals (75% of the total number of countable organisms recorded), followed by Sessilia (10 individuals) and *Chrironomidae* spp. (one individual).

Notable microbenthic taxa

- 3.10 The tentacled lagoon worm *Alkmaria romijni* is protected under the Wildlife and Countryside Act 1981 and is a protected feature of the Swanscombe Marine Conservation Zone. The species was recorded in subtidal grabs at stations 3, 6 and 22 within the Kent survey area (Figure 13.5.6). *A. romijni* had a total abundance of 8 individuals (two individuals at Stations 3 and 6 and 4 individuals at Station 22) and a mean density of 5.7 ± 12.2 individuals m⁻².
- 3.11 A total of seven non-native species were recorded within samples collected during the subtidal survey (*A. modestus, Cordylophora caspia, Eusarsiella zostericola, Magallana gigas, Melita nitida, Palaemon macrodactylus* and *Ruditapes philippinarum*). *A. modestus* was recorded within wall scrapes, *C. caspia* was recorded as a non-countable species at station 14, *E. zostericola* was recorded at stations 8, 12, 21 and 22, *M. gigas* was recorded at stations 6 and 11, *M. nitida* was recorded at station 22, *P. macrodactylus* was recorded at station 6 and *R. philippinarum* was recorded at station 14.
- 3.12 *Streblospio* sp. was found in 16 of the grab samples, Sessilia was found in eight of the grab samples and one of the wall scrape samples; Gammaridae was found in two of the grab samples and Chironomidae was found in one of the wall scrape samples. At least one species of these taxa are considered non-native in the UK, however, *Streblospio*, Sessilia, Gammaridae and Chironomidae are taxonomically problematic and individuals were not identified to species in this study.
- 3.13 There were nine species considered to be cryptogenic (i.e. that are neither demonstrably native nor non-native) were recorded (*Alitta succinea, A. improvisus, Apocorophium lacustre, Boccardiella ligerica, Eteone lighti, , Monocorophium insidiosum, P. cornuta, Teredo navalis* and *Tubificoides heterochaetus.*

Biomass analysis

3.14 The complete benthic biomass dataset for subtidal grabs is provided in Appendix 10.0 and biomass tables for major groups are provided in Appendix 11.0.

Kent project site

3.15 Faunal biomass in the subtidal grabs within the Kent survey area was dominated by annelids at nine of the 14 stations (2, 3, 4, 7, 8, 10, 12, 13 and 22), followed by crustaceans which dominated two of the 14 stations (5 and 9). Faunal biomass at station 1 was primarily comprised of annelids and crustaceans. Particularly high values for

molluscs were recorded at stations 6 and 11 (see Figure 13.5.7). This was largely influenced by a small number of *M. gigas* individuals which contributed to 63.33 g of total biomass at station 6 and 3.30 g at station 11. Biomass values for molluscs at Stations 6 and 11 have been removed in Figure 13.5.8 to show biomass values for other major groups at grab sample stations.

Essex Project Site

3.16 Faunal biomass in the subtidal grabs within the Essex survey area was dominated by annelids at four of the eight stations (16, 17, 19 and 20), followed by molluscs which dominated at two stations (15 and 18) and finally crustaceans which dominated biomass at station 21. A particularly high biomass value was recorded for 'other' taxa at station 14 (see Figure 13.5.9). This was primarily influenced by the presence of large individuals of *Actiniaria* spp. at this station.

Multivariate analysis

- 3.17 The results of the SIMPROF cluster analysis on the microbenthic data for subtidal samples are presented in the cluster dendrogram (Figure 13.5.10) and MDS plot (Figure 13.5.12). A dendrogram and MDS plot is also provided in Figure 13.5.11 and Figure 13.5.13 respectively, indicating the grouping of stations by Project Site. Black lines denote significant structure within the group to that point and red lines connect samples that cannot be significantly differentiated at the 95% confidence interval. The SIMPROF test identified eight groups (Group a-h) that can be considered statistically distinct from one-another at the 95% confidence level, three of which consisted of a single station. The stress value of the MDS plot is low (0.17), indicating a good two-dimensional representation of the higher dimensional relationships between samples with no real prospect of a misleading interpretation (Clarke & Warwick, 2001). The results of SIMPER analysis presenting percentage contributions of different taxa to within-group similarity and between group dissimilarity are provided in Appendix 12.0.
- 3.18 **Group a** consisted of two samples from the Kent survey area (stations 1 and 2), which separated from the other groups on the dendrogram at just under 30% similarity and are placed towards the top right of the MDS plot. This group was characterised by a relatively high abundance of *A. succinea* which contributed 45.86% to within group similarity; and lower abundances of *Amphibalanus improvisus*, *Einhornia crustulenta* and *Cyathura carinata*.
- 3.19 **Group b** was the largest SIMPROF group consisting of seven sample stations, six from the Kent survey area (stations 3, 6, 9, 11, 12 and 22) and one from the Essex survey area (station 14), which separated from the other groups at approximately 35% similarity. This group was characterised primarily by Sessilia, *A. improvisus, P. cornuta and A. succinea* which contributed to 65.48% within-group similarity.
- 3.20 **Group c** was consisted of just one sample taken from the Essex survey area (station 17), separating from other groups at approximately 43% similarity.

- 3.21 **Group d** was comprised of two samples taken from the Kent survey area (Stations 5 and 13), separating from other groups at approximately 70% similarity. This group was characterised by a relatively high abundance of *C. volutator* which contributed 63.68% to within-group similarity.
- 3.22 **Group e** was made up of just one sample taken from the Essex survey area (Station 10), separating from other groups at approximately 25% similarity.
- 3.23 **Group f** consisted of three sample stations taken from the Kent survey area (Stations 4, 7 and 8), separated from other groups at just under 60% similarity. This group was categorised primarily by *T. heterochaetus* and *Streblospio* spp. which contributed 47.28% to within-group similarity.
- 3.24 **Group g** was made up of four samples taken from the Essex survey area (Stations 15, 16, 19 and 20) and separated from other groups at approximately 17% similarity. This group was categorised by relatively high abundances of *T. benedii* and Tharyx 'species A' which contributed 68.69% to within-group similarity.
- 3.25 **Group h** was made up of two samples taken from the Essex survey area (Stations 18 and 21) and separated from other groups at approximately 17% similarity. This group was categorised by high abundances of Tharyx 'species A' which contributed 61.34% to within-group similarity.

Habitat allocation

- 3.26 The subtidal grab samples from the Kent and Essex survey areas had broadly overlapping species composition with the main differences between cluster groups resulting from differences in sediment composition or relative abundances of individual taxa. The eight SIMPROF cluster groups were assigned to one of four EUNIS habitat types (Table 3-3). All cluster groups were assigned as a variant of their standard descriptions (Connor et al. 2004).
- 3.27 A variant of Polydora ciliata and Corophium volutator in variable salinity infralittoral firm mud or clay (EUNIS code: A5.321) was the most common habitat characterising three cluster groups (a, d and f) and seven stations (Table 3-3). This was closely followed by a variant of *Aphelochaeta* spp. and *Polydora* spp. in variable salinity infralittoral mixed sediment (A5.421) which was characterised for just one cluster group (b) and six stations (Table 3-3). The locations of these two habitats (Figure 13.5.14) suggests a patchy distribution of habitats across the survey area. Finally, a variant of *Crepidula fornicata* and *Mediomastus fragilis* in variable salinity infralittoral mixed sediment (A5.422) was characterised for a single cluster group (e) and a single station (Table 3-3)), and was located adjacent to White's jetty (Figure 13.5.14).
- 3.28 Habitats within the Essex survey area were fairly homogenous, with majority of stations assigned to a variant of the habitat '*Aphelochaeta marioni* and *Tubificoides* spp. in variable salinity infralittoral mud' (A5.322) which characterised two cluster groups (g and h) and six stations (Table 3-3; Figure 13.5.15).

3.29 The remaining two stations within the Essex survey area were assigned to either variants of either '*Polydora ciliata* and *Corophium volutator* in variable salinity infralittoral firm mud or clay' (A5.321) (cluster group c) or '*Aphelochaeta* spp. and *Polydora* spp. in variable salinity infralittoral mixed sediment' (A5.421) (cluster group b). Habitat A5.321 was located towards to the western region of the Essex survey area close to stations assigned to A5.322 (Figure 13.5.15) and was characterised differently due to increased abundance of *C. volutator* and fewer individuals of *T. benedii*. The habitat A5.421 was located furthest west of the survey area, just south of the Port of Tilbury ferry terminal and closer towards the centre of the Thames estuary (Figure 13.5.15). The habitat was characterised by increased numbers of *Aphelochaeta* spp. and *Polydora* spp., and coarser sediments compared to the rest of the survey area.

Table 3-3: Summary particle size data from each Kent and Essex subtidal sample station.

Cluster Group	Description	EUNIS code	Habitat (JNCC code)	Stations
A	Variant of <i>Polydora</i> <i>ciliata</i> and <i>Corophium</i> <i>volutator</i> in variable salinity infralittoral firm mud or clay.	A5.321	c.f. SS.SMu.SMuVS.PolCvol	1, 2
В	Variant of <i>Aphelochaeta</i> spp. and <i>Polydora</i> spp. in variable salinity infralittoral mixed sediment.	A5.421	c.f. SS.SMx.SMxVS.AphPol	3, 6, 9, 11, 12, 14, 22
С	Variant of <i>Polydora</i> <i>ciliata</i> and <i>Corophium</i> <i>volutator</i> in variable salinity infralittoral firm mud or clay.	A5.321	c.f. SS.SMu.SMuVS.PolCvol	17
D	Variant of <i>Polydora</i> <i>ciliata</i> and <i>Corophium</i> <i>volutator</i> in variable salinity infralittoral firm mud or clay.	A5.321	c.f. SS.SMu.SMuVS.PolCvol	5, 13
E	Variant of <i>Crepidula</i> <i>fornicata</i> and <i>Mediomastus fragilis</i> in variable salinity infralittoral mixed sediment.	A5.422	c.f. SS.SMx.SMxVS	10
F	Variant of <i>Polydora</i> <i>ciliata</i> and <i>Corophium</i> <i>volutator</i> in variable salinity infralittoral firm mud or clay.	A5.321	c.f. SS.SMu.SMuVS.PolCvol	4, 7, 8
G	Variant of <i>Aphelochaeta</i> <i>marioni</i> and <i>Tubificoides</i> spp. in variable salinity infralittoral mud.	A5.322	c.f. SS.SMu.SMuVS.AphTubi	15, 16, 19, 20
н	Variant of <i>Aphelochaeta</i> <i>marioni</i> and <i>Tubificoides</i> spp. in variable salinity infralittoral mud.	A5.322	c.f. SS.SMu.SMuVS.AphTubi	18, 21

SEDIMENT CHEMISTRY DATA

3.30 For the subtidal stations at which samples were collected for chemical analyses a comparison of chemical concentrations against Chemical Action Levels (MMO 2015) and/or Canadian Sediment Quality Guidelines for the Protection of Aquatic Life (CCME 2002) is provided in Appendix 13.0. Not all chemicals have guidelines indicating thresholds for potential biological effects and the results for other selected chemical analyses are provided in Appendix 14.0.

Kent Project Site

- 3.31 The only exceedances of the cAL2 concentrations were mercury and zinc at station 5 and mercury at station 9. The greatest number of exceedances were at stations 5, 6 and 9 (Appendix 13.0).
- 3.32 The heavy metals with the most frequent exceedances were nickel with cAL1 exceedances at 12 of the 14 stations (all of these were also above TEL but below PEL), lead with cAL1 exceedances at 11 stations (five above TEL but below PEL and six above PEL), and copper with cAL1 exceedances at nine stations (six above TEL but below PEL and three above PEL). Arsenic and chromium were the heavy metals with the least number of cAL1 exceedances (five stations each).
- 3.33 The greatest number of exceedances for PAHs were at stations 5, 6, 9 and 22. The PAHs with the most frequent exceedances were dibenzo[ah]anthracene which exceeded cAL1 at 10 of the 14 stations (six above TEL but below PEL and four above PEL), followed by benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[ghi]perylene, benzo[e]pyrene, chrysene, fluoranthene, indeno[1,2,3-cd]pyrene and pyrene which exceeded cAL1 at nine of the 14 stations.
- 3.34 For the majority of PAHs, concentrations were generally above both TEL and PEL, with some concentrations exceeding TEL only. Stations 12 and 13 were the only stations where no exceedances were observed for any PAHs.
- 3.35 For PCBs (Polychlorinated Biphenyls), sum of ICES 7 and sum of 25 congeners were below cAL1 at all stations. Similarly, no exceedances were observed for organichlorine pesticides.

Essex Project Site

- 3.36 Unlike stations at the Kent Project Site, no exceedances of the cAL2 concentration were observed at any station within the Essex survey area. The greatest number of chemical exceedances was at Station 15 (Appendix 13.0).
- 3.37 The only heavy metal to exceed the cAL1 concentration was nickel at station 17. The concentration of nickel at this station also exceeded TEL but was below PEL. No other cAL1 exceedances were observed at any other station.

- 3.38 The greatest number of exceedances for PAHs was at station 15. The PAHs with the most frequent exceedances were benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[e]pyrene, chrysene, dibenzo[ah]anthracene, fluoranthene, indeno[1,2,3-cd]pyrene and pyrene which exceeded cAL1 at six of the eight stations (Stations 15, 16, 18, 19, 20 and 21).
- 3.39 For most PAHs, concentrations were generally below PEL, however, where exceedances occurred for benzo[b]fluoranthene, benzo[e]pyrene, benzo[ghi]perylene, benzo[k]fluoranthene and indeno[1,2,3-cd]pyrene; exceedances were above PEL. Stations 14 and 17 were the only stations where no exceedances were observed for any PAHs.
- 3.40 For PCBs, sum of ICES 7 and sum of 25 congeners were below cAL1 at all stations. Similarly, no exceedances were observed for organichlorine pesticides.

Chapter Four Summary

SUMMARY AND DISCUSSION

- 4.1 A subtidal benthic ecology survey was conducted in August and September 2020 with samples collected for biotic analysis, PSA and sediment chemistry. A total of 15 and eight stations were sampled form the Kent and Essex survey areas respectively.
- 4.2 The dominance of Gravelly Mud and Muddy Sand were noted for grab samples taken from the Kent and Essex survey areas respectively. Within the Kent survey area, eight of 14 stations were classified as Gravelly Mud whilst remaining stations were classified as either Muddy Sandy Gravel, Sandy Mud, Muddy Gravel and Mud. Most stations were classified as 'extremely poorly sorted' with the exception of four stations. Four of the eight stations from Essex were classified as Muddy Sand whilst remaining stations were classified as either Muddy Sand, Gravelly Muddy Sand and Gravel. All stations except one were considered to be 'poorly sorted'. Sediment type can often be closely correlated to chemical concentrations with some chemicals tending to exhibit higher concentrations in muddier sediment fractions (due to adsorption preference). There was some evidence of this within sediment samples as Stations 11 and 12 (Muddy Sandy Gravel) and Station 14 (Gravel) exceeded very few or none of the chemical thresholds tested for chemicals compared to other stations which contained higher proportions of mud. The heavy metals that exceeded thresholds at most stations within the Kent survey area were nickel and lead (12 and 11 stations respectively). Nickel was the only heavy metal to exceed thresholds within the Essex survey area and this was only evident at one station. The only exceedance of cAL2 was for mercury and zinc at two stations and one station respectfully, within the Kent survey area. cAL1/PEL thresholds for numerous PAHs were exceeded at many of the sample stations within both the Kent and Essex survey areas. The presence of chemicals at the levels recorded is not unexpected for an industrial estuary such as the Thames Estuary.
- 4.3 A total of 38 and 41 taxa were recorded in the subtidal grab samples at Kent and Essex respectively, with five taxa recorded in wall scrape samples. Density of invertebrates at each station was highly variable ranging from 50 individuals m² to 14,270 individuals m² within the Kent survey area and 80 individuals m² to 27,510 individuals m² within the Essex survey area. Sessilia was the most abundant taxon recorded at the Kent survey area accounting for 27.9% of the total number of countable organisms, the oligochaete *Tubificoides benedii* was the most abundant taxon recorded at the Essex survey area accounting for 34.9% of the total number of countable organisms; and the non-native barnacle *Austominius modestus* was the most abundant taxon recorded within wall scrape samples. Biomass data indicated that annelids dominated subtidal grab stations within the Kent and Essex survey areas (influenced primarily by high numbers of *Streblospio, A. succinea, P. cornuta* and *T. benedii*) followed by crustaceans (influenced by large *M. gigas* individuals).

- 4.4 Species composition of subtidal grab samples from the Kent and Essex survey areas were distinct from one another and stations within each survey area had broadly overlapping species composition with the main differences between cluster groups resulting from differences in sediment composition or relative abundances of individual taxa. A total of eight SIMPROF cluster groups were identified and assigned to one of four habitats. Cluster groups containing stations from the Kent survey area were assigned to variants of the following three habitats: Polydora ciliata and Corophium volutator in variable salinity infralittoral firm mud or clay (A5.321) (7 stations, 3 cluster groups); Aphelochaeta spp. and Polydora spp. in variable salinity infralittoral mixed sediment (A5.421) (6 stations, 1 cluster group); and Crepidula fornicata and Mediomastus fragilis in variable salinity infralittoral mixed sediment (A5.422) (1 station, 1 cluster group). Cluster groups containing stations from the Essex survey area were also assigned to variants of the following three habitats: Aphelochaeta marioni and Tubificoides spp. in variable salinity infralittoral mud (A5.322) (6 stations, 2 cluster groups); Polydora ciliata and Corophium volutator in variable salinity infralittoral firm mud or clay (A5.321) (2 station, 2 cluster groups); and Aphelochaeta spp. and Polydora spp. in variable salinity infralittoral mixed sediment (A5.421) (1 station, 1 cluster group).
- 4.5 The tentacled lagoon worm *Alkmaria* romijni was recorded in relatively low densities at three stations within the Kent survey area (20 individuals m⁻² recorded at Stations 3 and 6 and 40 individuals m⁻² recorded at Station 22. *A. romijni* is a protected feature of the Swanscombe MCZ and is scarce throughout the UK (DEFRA 2019).
- 4.6 A total of seven non-native species were recorded during the subtidal survey (A. modestus C. caspia, E. zostericola, M. gigas, M. nitida, P. macrodactylus and R. philippinarum). C. caspia and R. philippinarum was recorded within the Kent survey area; M. nitida and P. macrodactylus were recorded in the Essex survey area; E. zostericola and M. gigas were recorded at the Kent and Essex survey areas and A. modestus was recorded within wall scrape samples only. Streblospio sp. and Gammaridae were recorded in subtidal grab samples whilst Sessilia was recorded in subtidal and wall scrape samples. Chironomidae was also recorded in one wall scrape sample. At least one species of each of these taxa are considered non-native in the UK. A total of nine species considered to be cryptogenic were recorded (A. succinea, A. improvisus, A. lacustre, B. ligerica, E. lighti, M. insidiosum, P. cornuta, T. navalis and T. heterochaetus).
- 4.7 E. zostericola is known from a number of estuaries in south-eastern Britain including the Thames and it has previously been recorded in the vicinity of Tilbury Power Station (RWE nPower 2011 (unpublished data)). E. zostericola was believed to have been introduced into the UK with Pacific Oysters M. gigas (Eno et al. 1997). The hydroid C. caspia was recorded in seven of the subtidal samples. This species has a preference for low salinity or freshwaters and is abundant in the Thames where it provides a valuable food resource for the sea slug Tenellia adspersa which is protected under the Wildlife and Countryside Act 1981 but this slug was not recorded in the river Thames in November 1992 and abundant within the estuary by 2006 (Worsfold & Ashelby 2008; Ashelby et al. 2013). R. philiformes was introduced via hatcheries within the outer Thames estuary and

is considered to be commercially important (Humphreys *et al.* 2015). *M. nitida* has recently been introduced into the UK.

4.8 Overall, the habitats recorded at the Kent and Essex project sites are considered to be widespread within the Thames Estuary and with the exception of *A. romijni* which is restricted to the Swanscombe MCZ area, species recorded are considered to be widespread within the wider mid and lower Thames Estuary.

References

Ashelby C. W., De Grave S. & Johnson M. L. 2013. The Global Invader Palaemon macrodactylus (Decapoda, Palaemonidae): An Interrogation of Records and a Synthesis of Data. Crustaceana 86(5): 594-624.

CCME (Canadian Council of Ministers of the Environment). 2002. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life. Summary Tables. Update 2002. 7pp.

Clarke K. & Warwick R. 2001. Change in Marine Communities: An approach to statistical analysis and interpretation. 2nd edition:. PRIMER-E, Plymouth, UK, 172pp

Clarke, K. R. and Gorley, R. N. 2006. PRIMER v6: User manual/tutorial. Plymouth: PRIMERE Ltd, Plymouth, 192 pp.

Cooper K. M. & Mason C. 2017. Protocol for Sample Collection and Processing Version 5.0. Regional Seabed Monitoring Plan (RSMP).

CSEMP (Clean Seas Environment Monitoring Programme) 2012. Marine Assessment and Review Group (MARG) UK Clean Seas Environment Monitoring Programme (CSEMP) Green Book. Available online.

Davies, J., Baxter, J., Bradley, M., Connor D., Khan J., Murray E., Sanderson W., Turnbull C. & Vincent M. (eds.). 2001. Marine Monitoring Handbook. Joint Nature Conservation Committee, Peterborough.

DEFRA, 2019. Swanscombe Marine Conservation Zone Factsheet. Available from https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_dat a/file/915349/mcz-swanscombe-2019.pdf. Accessed 2020-10-29.

EEA (European Environment Agency). 2017. EUNIS habitat type hierarchical view. Available at: http://eunis.eea.europa.eu/habitats-code-browser.jsp

Eleftheriou A. & Basford D.J. 1989. The macrobenthic infauna of the offshore northern North Sea. Journal of the Marine Biological Association of the United Kingdom 69(1): 123-143.

Eno N. C., Clark, R. A. & Sanderson, W. G. 1997. Non-native marine species in British waters: a review and directory. Joint Nature Conservation Committee, Peterborough, UK

GBNNSS (Great Britain Non-Native Species Secretariat). 2018. http://www.nonnativespecies.org/index.cfm?pageid=64

Humphreys J., Harris M., Herbert R. J. H., Farrell P., Jensen A. & Cragg S. 2015. Introduction, dispersal and naturalisation of the Manila clam Ruditapes philippinarium in British estuaries,

1980 – 2010. Journal of the Marine Biological Association of the United Kingdom 95(6): 1163-1172.

Marine Management Organisation (MMO). 2015. High Level Review of Current UK Action Level Guidance. A report produced for the Marine Management Organisation, 73 pp. MMO Project No: 1053. ISBN: 978-1-909452-35-0.

Mason C. 2016. NMBAQC's Best Practice Guidance. Particle Size Analysis (PSA) for Supporting Biological Analysis. National Marine Biological AQC Coordinating Committee, 77pp, First published 2011, updated January 2016. Available online

RWE nPower. 2011. Tilbury Biomass Phase 2. Technical Appendix: Benthic Ecology Baseline Data. Unpublished report.

Ware S. J. & Kenny A. J. 2011. Guidelines for the Conduct of Benthic Studies at Marine Aggregate Extraction Sites (2nd Edition). Marine Aggregate Levy Sustainability Fund, 82pp. ISBN: 978 0 907545 70 5

WFD-UKTAG (Water Framework Directive UK Technical Advisory Group). 2014. UKTAG Transitional and Coastal Water Assessment Method Benthic Invertebrate Fauna. Infaunal Quality Index

WoRMS Editorial Board 2017. World Register of Marine Species. Available from http://www.marinespecies.org at VLIZ. Accessed 2018-06-20; doi:10.14284/170

Worsfold T. M. & Ashelby C. W. 2008. Additional UK records of the non-native prawn Palaemon macrodactylus (Crusatcea: Decapoda). Marine Biodiversity Records, 1(e48): 1-3 [originally published as: JMBA2 Biodiversity Records, 5547: 1-3].

Worsfold T. M., Hall D. J. & O'Reilly M. (Ed.) 2010. Guidelines for processing marine macrobenthic invertebrate samples: a Processing Requirements Protocol: Version 1.0, June 2010. Unicomarine Report NMBAQCMbPRP to the NMBAQC Committee. 33pp. Available online

Appendices

Appendix 1.0 Figures

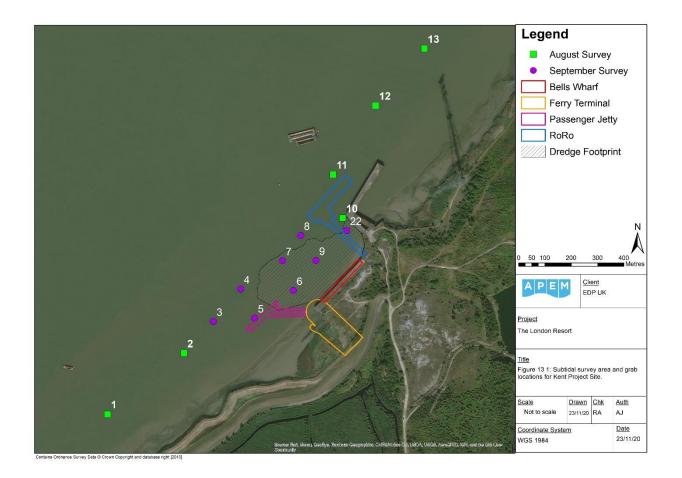


Figure 13.5.1: Subtidal survey area and grab locations for Kent Project Site.



Figure 13.5.2: Subtidal survey area and grab locations for Essex Project Site.

Figure 13.5.3: Dalby Venture, used for the first subtidal survey.



Figure 13.5.4: Emilia D, used for the second subtidal survey.

Mu	Μ
Sandy mu	sM
Slightly gravelly mu	(g)M
Slightly gravelly sandy mu	(g)sM
Gravelly mu	gM
San	s
Muddy san	mS
Slightly gravelly sar	(g)S
Slightly gravelly muddy san	(g)mS
Gravelly muddy san	gmS
Gravelly sar	gS
Grav	G
Muddy grave	mG
Muddy sandy grave	msG
Sandy grav	sG

gS

(g)S

9:1

S

SAND

GRAVEL

G

msG sG

gmS

(g)mS

mS

1:1

SAND:MUD RATIO (not to scale)

80

gМ

(g)sM

sM

mG

Participation of the second of

(g)M

1:9

5

М

1

MUD

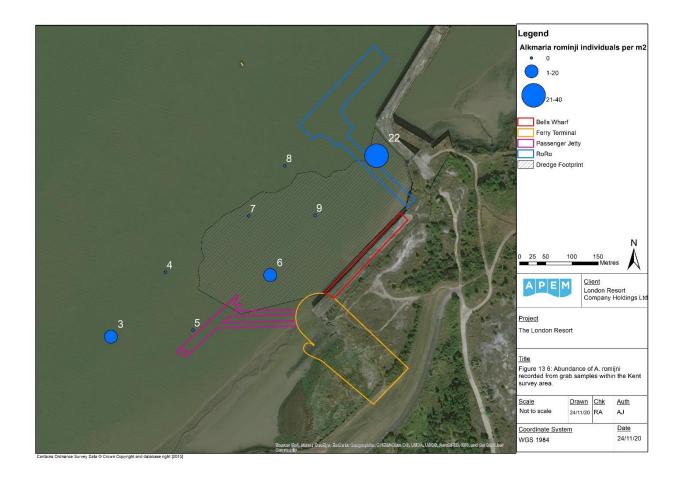


Figure 13.5.6: Abundance of *A. rominji* recorded from grab samples within the Kent survey area.

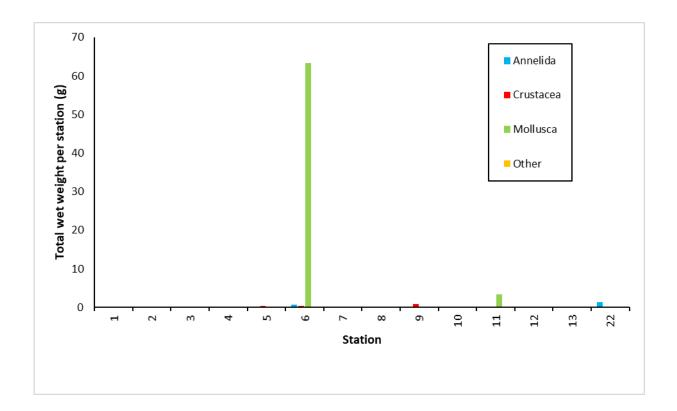


Figure 13.5.7: Total wet weight biomass in grams at each subtidal grab station within the Kent survey area.

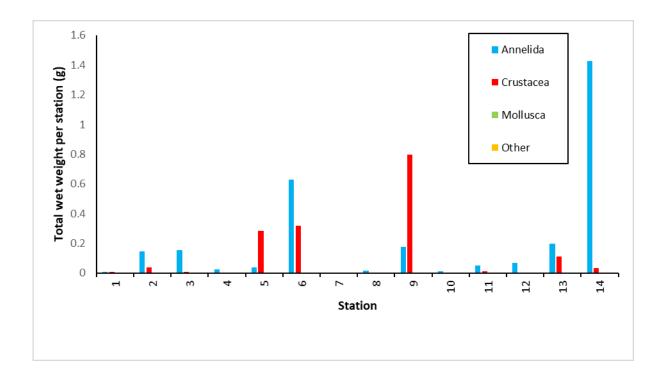


Figure 13.5.8: Total wet weight biomass in grams at each subtidal grab station within the Kent survey area with values for molluscs at Station 6 and 11 removed.

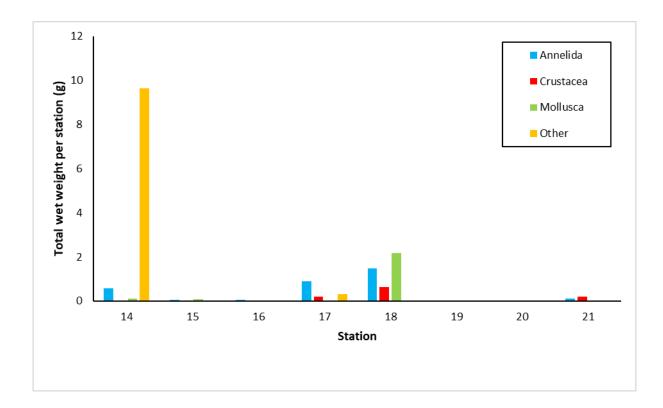


Figure 13.5.9: Total wet weight biomass in grams at each subtidal grab station within the Essex survey area.

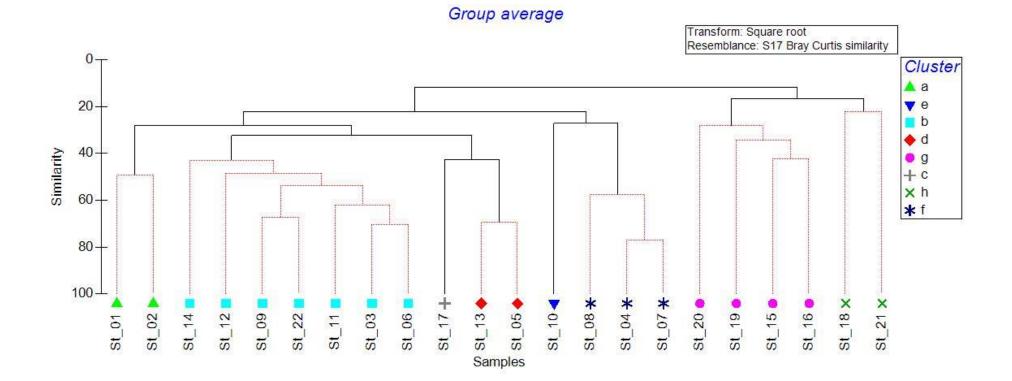


Figure 13.5.10: Cluster analysis dendrogram with SIMPROF for subtidal grab invertebrate abundance. Black lines show groupings at ≥5%.

Figure 13.5.11: Cluster analysis dendrogram with SIMPROF for subtidal grab invertebrate abundance. Stations are categorised based on survey area. Black lines show groupings at ≥5%

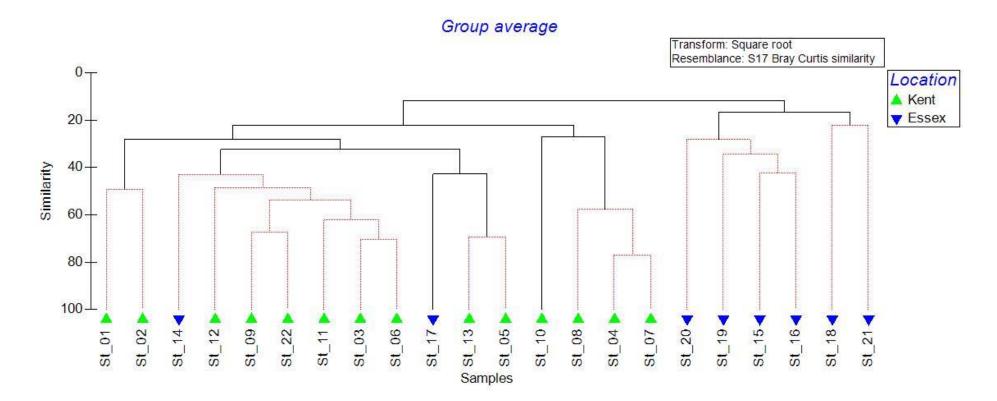


Figure 13.5.12: Multidimensional Scaling ordination plot for subtidal grab invertebrate abundance.

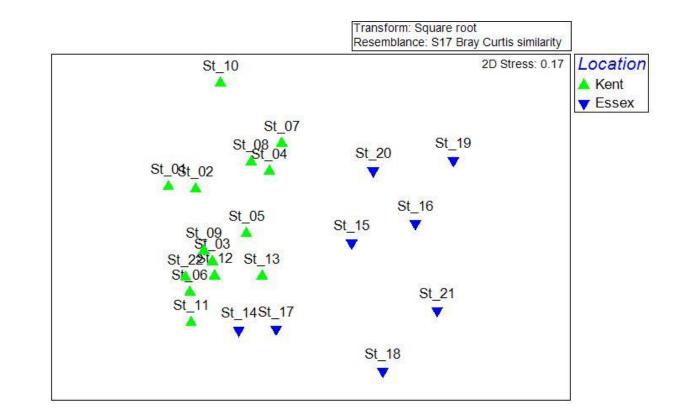


Figure 13.5.13: Multidimensional Scaling ordination plot for subtidal grab invertebrate abundance. Stations are categorised based on survey area.

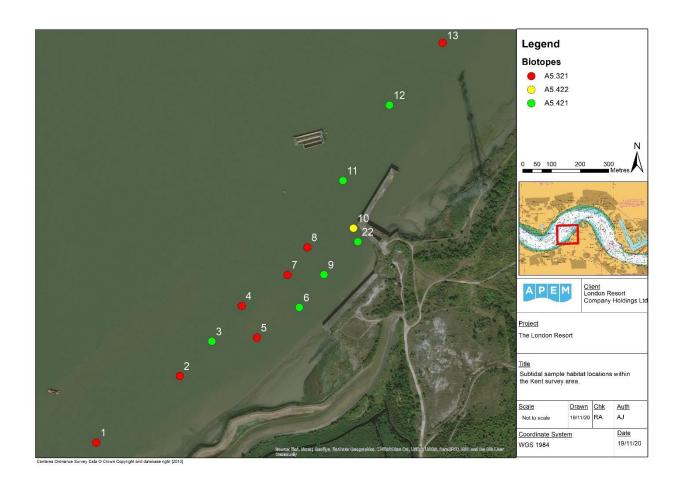
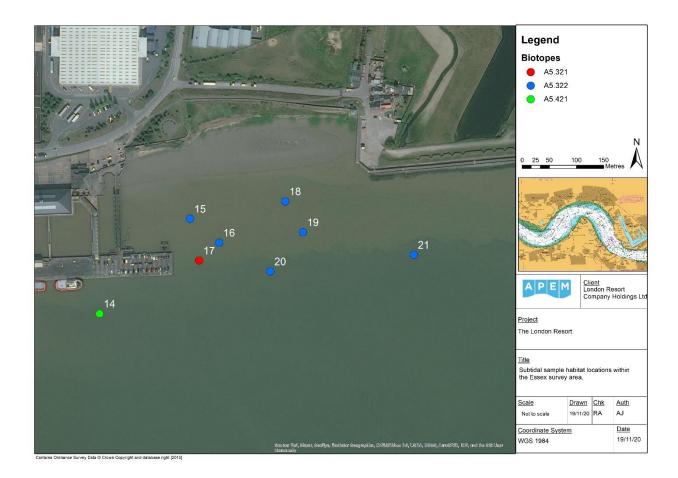



Figure 13.5.14: Subtidal sample habitat locations within the Kent survey area.

Figure 13.5.15: Subtidal sample habitat locations within the Essex survey area.

Appendix 2.0 Sample locations

		WGS84		British National Grid	
Station	Sample Date	Latitude	Longitude	Easting	Northing
G01	26/08/2020	51.457695	0.292567	559372	175683
G02	26/08/2020	51.45828	0.295929	559603	175755
G03	29/09/2020	51.45915	0.296886	559667	175854
G04	29/09/2020	51.459843	0.297821	559729	175933
G05	29/09/2020	51.459221	0.298293	559764	175865
G06	29/09/2020	51.459811	0.299619	559854	175933
G07	29/09/2020	51.460446	0.29925	559827	176003
G08	29/09/2020	51.460983	0.29987	559868	176064
G09	29/09/2020	51.460452	0.300388	559906	176006
G10	25/08/2020	51.46133	0.301272	559964	176106
G11	25/08/2020	51.462286	0.300979	559940	176211
G12	25/08/2020	51.463602	0.302137	560016	176360
G13	25/08/2020	51.465135	0.30404	560143	176535
G14	25/08/2020	51.449913	0.36572	564482	174979
G15	25/08/2020	51.451293	0.367335	564589	175136
G16	25/08/2020	51.450936	0.367972	564634	175098
G17	25/08/2020	51.450686	0.367369	564593	175069
G18	25/08/2020	51.451435	0.368568	564674	175155
G19	25/08/2020	51.450983	0.36922	564721	175106
G20	25/08/2020	51.450631	0.368509	564673	175065
G21	25/08/2020	51.450857	0.371103	564852	175096
G22	29/09/2020	51.461092	0.301445	559977	176080

Appendix 3.0 List of Chemicals Analysed

Metals		
Arsenic	Copper	Lead
Cadmium	Mercury	Zinc
Chromium	Nickel	

PAHs (DTI 2-6 ring aromatics + EPA 16)				
Acenaphthene	Benzo(e)pyrene	C3-naphthalenes	Naphthalene	
Acenaphthylene	Benzo(ghi)perylene	Chrysene	Perylene	
Anthracene	Benzo(K)fluoranthene	Dibenzo(ah)anthracene	Phenanthrene	
Benzo(a)anthracene	C1-naphthalenes	Fluoranthene	Pyrene	
Benzo(a)pyrene	C1-phenanthrene	Fluorene		
		Indeno(1,2,3-		
Benzo(b)fluoranthene	C2-naphthalenes	cd)pyrene		

PCBs (~Indicates included in suite ICES7						
PCB28~	PCB138~	PCB110	PCB151	PCB180~	PCB31	
PCB52~	PCB153~	PCB128	PCB156	PCB183	PCB44	
PCB101~	PCB18	PCB141	PCB158	PCB187	PCB47	
PCB118~	PCB105	PCB149	PCB170	PCB194	PCB49	
					PCB66	

Organochlorine Pesticides	
alpha-Hexachlorcyclohexane	Hexachlorobenzene
beta-Hexachlorcyclohexane	p,p'-Dichorodiphenyldicloroethylene
gamma-Hexachlorcyclohexane	p,p'-Dichorodiphenyltrichloroethane
Dieldrin	p,p'-Dichorodiphenyldicloroethane

Brominated Flame Retardants			
BDE100	BDE183	BDE99	
BDE17	BDE85	BDE154	
BDE66	BDE153	BDE47	
BDE138	BDE28	BDE209	

Other analyses
Diuron
Dichlorvos
Cyanide (free and total)
Phenol
Gasoline Range Organics (GRO) plus Benzene, Toluene, Ethylbenzene and Xylene (BTEX) and
Methyl Tert-Butyl Ether (MTBE)
Total Petroleum Hydrocarbons (TPH) by GCFID
Asbestos

Appendix 4.0 Subtidal sample photographs

Station	Raw sediment	Sieved sediment
1		
2		
3		
4		

Station	Raw sediment	Sieved sediment
5	The second se	
6		
7		
8		

Station	Raw sediment	Sieved sediment
9		
10		
11		
12		

Station	Raw sediment	Sieved sediment
13		
22		
14		
15		

Station	Raw sediment	Sieved sediment
16		
17		
18		
19		Image not taken

Station	Raw sediment	Sieved sediment
20		
21		

Appendix 5.0 Wall scrape sample photographs

Station	Surface
WS6	Project No. AssA Station: HS 6
WS7	PEMCATE: 26 Aug '20 GEAR: Scrape ect No: 4354 Station: WS 7

Appendix 6.0 Two-stage analysis of resemblance matrices for different transformation options

Two stage analysis of transformations

Correlation (-1 to 1)

	Resem No	Resem PA	Resem SqRoot	Resem4thRot
Untrans_B-C				
SqRt_B-C	0.931552			
4thRT_B-C	0.809334	0.959646		
Log(X+1)_B-C	0.869754	0.980325	0.974677	
PA-B-C	0.642477	0.845284	0.955192	0.881762

Unicomarine Report NMBAQCMbPRP to the NMBAQC Committee. 33pp. Available online.

Appendix 7.0 Particle size data for subtidal stations

Station	Location	Visual description pre-analysis	Blott & Pye (2012)	Folk (1954)			(1957) formulae					
ID			classification	classification		Mean		Sorting		Skewness		Kurtosis
					(µm)	(description)	(phi)	(description)	(phi)	(description)	(phi)	(description)
3	Kent	Mud	Very slightly sandy mud	Mud	10.4	Medium Silt	1.851	Poorly Sorted	0.229	Fine Skewed	1.375	Leptokurtic
4	Kent	Gravelly mud	Gravelly sandy mud	Gravelly Mud	111.6	Very Fine Sand	5.270	Extremely Poorly Sorted	-0.318	Very Coarse Skewed	1.120	Leptokurtic
5	Kent	Gravelly mud	Slightly sandy muddy gravel	Muddy Gravel	2274.1	Very Fine Gravel	5.051	Extremely Poorly Sorted	0.694	Very Fine Skewed	0.653	Very Platykurtic
6	Kent	Gravelly mud	Slightly sandy slightly muddy gravel	Muddy Gravel	3508.9	Very Fine Gravel	4.638	Extremely Poorly Sorted	0.822	Very Fine Skewed	0.853	Platykurtic
7	Kent	Gravelly mud	Slightly sandy muddy gravel	Muddy Gravel	256.8	Medium Sand	5.437	Extremely Poorly Sorted	-0.154	Coarse Skewed	0.586	Very Platykurtic
8	Kent	Gravelly mud	Slightly sandy muddy gravel	Muddy Gravel	1998.0	Very Coarse Sand	4.558	Extremely Poorly Sorted	0.676	Very Fine Skewed	0.671	Platykurtic
9	Kent	Gravelly mud	Slightly sandy muddy gravel	Muddy Gravel	1230.4	Very Coarse Sand	5.263	Extremely Poorly Sorted	0.402	Very Fine Skewed	0.524	Very Platykurtic
22	Kent	Gravelly mud	Slightly sandy gravelly mud	Muddy Gravel	222.1	Fine Sand	4.969	Extremely Poorly Sorted	-0.306	Very Coarse Skewed	0.599	Very Platykurtic
1	Kent	Gravelly mud	Slightly sandy slightly muddy gravel	Muddy Gravel	4785.0	Fine Gravel	4.116	Extremely Poorly Sorted	0.875	Very Fine Skewed	1.775	Very Leptokurtic
2	Kent	Sandy mud	Sandy mud	Sandy Mud	14.8	Medium Silt	3.222	Very Poorly Sorted	0.075	Symmetrical	1.051	Mesokurtic
10	Kent	Slightly gravelly mud	Slightly gravelly slightly sandy mud	Gravelly Mud	62.6	Very Fine Sand	4.234	Extremely Poorly Sorted	-0.422	Very Coarse Skewed	1.308	Leptokurtic
11	Kent	Gravelly mud	Slightly muddy sandy gravel	Muddy Sandy Gravel	3871.5	Very Fine Gravel	3.893	Very Poorly Sorted	0.648	Very Fine Skewed	0.822	Platykurtic
12	Kent	Gravelly mud	Slightly muddy sandy gravel	Muddy Sandy Gravel	3853.6	Very Fine Gravel	3.231	Very Poorly Sorted	0.573	Very Fine Skewed	0.977	Mesokurtic
13	Kent	Sandy mud	Sandy mud	Sandy Mud	27.8	Coarse Silt	2.879	Very Poorly Sorted	0.008	Symmetrical	0.991	Mesokurtic
14	Essex	Gravel	Very slightly muddy slightly sandy gravel	Gravel	15225.6	Medium Gravel	1.700	Poorly Sorted	0.463	Very Fine Skewed	2.002	Very Leptokurtic
15	Essex	Mud	Muddy sand	Muddy Sand	38.2	Very Coarse Silt	2.089	Very Poorly Sorted	0.600	Very Fine Skewed	0.975	Mesokurtic
16	Essex	Mud	Sandy mud	Sandy Mud	30.8	Coarse Silt	2.338	Very Poorly Sorted	0.411	Very Fine Skewed	0.833	Platykurtic
17	Essex	Mud	Sandy mud	Sandy Mud	21.3	Coarse Silt	2.588	Very Poorly Sorted	0.159	Fine Skewed	0.893	Platykurtic
18	Essex	Mud	Muddy sand	Muddy Sand	37.8	Very Coarse Silt	2.083	Very Poorly Sorted	0.567	Very Fine Skewed	0.968	Mesokurtic
19	Essex	Mud	Muddy sand	Muddy Sand	49.7	Very Coarse Silt	2.070	Very Poorly Sorted	0.619	Very Fine Skewed	0.999	Mesokurtic
20	Essex	Slightly gravelly mud	Slightly gravelly muddy sand	Gravelly Muddy Sand	73.9	Very Fine Sand	3.307	Very Poorly Sorted	0.150	Fine Skewed	1.341	Leptokurtic
21	Essex	Mud	Muddy sand	Muddy Sand	53.2	Very Coarse Silt	2.385	Very Poorly Sorted	0.616	Very Fine Skewed	0.920	Mesokurtic

Station	Location	Primary	d10	d50	d90	Gravel	Sand	Mud	V Coarse Gravel	Coarse Gravel	Medium Gravel	Fine Gravel	V Fine Gravel	V Coarse Sand	Coarse Sand
ID		Mode				(>2 mm)	(63-2000 μm)	(<63 µm)	(32-64 mm)	(16-32 mm)	(8-16 mm)	(4-8 mm)	(2-4 mm)	(1-2 mm)	(500-1000 μm)
		(µm)	(µm)	(µm)	(µm)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
3	Kent	13.3	1.6	11.4	40.1	0.0	3.5	96.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	Kent	13.3	1.7	37.3	19146.1	20.7	22.7	56.6	5.1	10.2	2.1	1.8	1.5	0.9	2.6
5	Kent	54000.0	7.4	14015.4	55056.7	63.6	13.7	22.7	30.4	17.4	11.2	3.1	1.6	1.2	4.0
6	Kent	38250.0	12.2	24995.8	52677.2	71.9	9.8	18.3	41.8	20.4	7.4	1.3	0.9	0.7	2.0
7	Kent	38250.0	2.8	127.7	32918.2	46.1	11.7	42.2	10.9	19.1	8.4	4.9	2.8	2.2	0.0
8	Kent	19200.0	10.8	9791.1	36531.1	62.7	16.3	21.1	16.4	28.5	8.1	6.5	3.2	2.2	2.7
9	Kent	54000.0	5.9	3567.7	56412.0	52.5	13.3	34.2	30.5	9.7	5.0	4.3	3.1	2.1	1.9
22	Kent	19200.0	4.3	78.9	22199.4	40.5	12.0	47.5	5.2	14.3	12.1	5.2	3.8	2.2	0.0
1	Kent	38250.0	23.4	26145.2	41456.0	77.1	9.8	13.1	41.6	21.0	9.2	3.9	1.5	0.9	0.7
2	Kent	26.7	0.6	16.0	250.1	0.0	24.7	75.3	0.0	0.0	0.0	0.0	0.0	0.0	3.3
10	Kent	13.3	2.8	20.4	4960.2	17.7	15.0	67.3	0.0	0.0	3.1	9.5	5.1	2.5	0.0
11	Kent	38250.0	34.7	11739.5	39465.9	64.9	23.2	11.9	26.0	17.6	13.2	4.7	3.5	3.0	5.8
12	Kent	26950.0	89.2	8669.0	29369.1	71.1	20.7	8.2	5.1	28.1	19.0	12.0	7.1	5.1	3.7
13	Kent	13.3	2.2	25.0	339.5	0.0	34.3	65.7	0.0	0.0	0.0	0.0	0.0	0.0	5.2
14	Essex	26950.0	3046.3	17489.9	36421.7	91.1	7.2	1.7	16.1	38.5	25.8	8.4	2.3	0.7	0.9
15	Essex	106.7	3.7	68.4	148.1	0.0	54.8	45.2	0.0	0.0	0.0	0.0	0.0	0.0	0.4
16	Essex	106.7	2.8	46.0	156.7	0.0	45.5	54.5	0.0	0.0	0.0	0.0	0.0	0.0	0.4
17	Essex	106.7	1.7	23.0	156.3	0.0	33.3	66.7	0.0	0.0	0.0	0.0	0.0	0.0	0.7
18	Essex	106.7	3.8	65.7	148.6	0.0	52.5	47.5	0.0	0.0	0.0	0.0	0.0	0.0	0.9
19	Essex	106.7	4.8	92.0	173.4	0.0	63.6	36.4	0.0	0.0	0.0	0.0	0.0	0.0	1.4
20	Essex	150.9	4.4	115.5	5901.2	12.6	51.7	35.7	0.0	0.0	7.3	4.3	1.0	0.2	2.6
21	Essex	150.9	3.7	107.4	234.9	0.0	63.2	36.8	0.0	0.0	0.0	0.0	0.0	0.0	1.9

Station	Location	Medium Sand	Fine Sand	V Fine Sand	V Coarse Silt	Coarse Silt	Medium Silt	Fine Silt	V Fine Silt	Clay	distributi	on in each '	'half-phi' s	ize interva	l, expresse	ed in µm (s	sieving for :	>1mm frac	tion, laser	diffraction
ID		(250-500 μm)	(125-250 µm)	(63-125 µm)	(31-63 µm)	(16-31 µm)	(8-16 µm)	(4-8 μm)	(2-4 µm)	(<2 μm)	>63000	45000	31500	22400	16000	11200	8000	5600	4000	2800
		(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)		to 63000	to 45000	to 31500	to 22400	to 16000	to 11200	to 8000	to 5600	to 4000
3	Kent	0.0	0.0	3.5	11.8	22.0	26.7	17.5	7.5	11.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	Kent	4.3	6.1	8.9	9.2	11.0	11.0	8.9	5.9	10.6	0.0	0.0	5.4	0.0	9.9	0.0	2.1	1.2	0.6	0.9
5	Kent	1.7	2.3	4.6	2.9	4.2	5.3	4.4	2.4	3.6	0.0	25.0	5.6	14.4	2.8	6.1	5.1	1.9	1.2	0.8
6	Kent	2.3	1.3	3.5	3.0	3.7	4.2	3.2	1.7	2.5	0.0	18.8	24.1	10.5	8.8	4.5	2.9	0.6	0.7	0.5
7	Kent	0.0	1.8	7.7	5.7	6.6	8.5	8.4	5.2	7.8	0.0	0.0	11.4	8.7	9.8	4.3	4.1	3.1	1.8	1.5
8	Kent	2.4	3.3	5.8	3.8	4.5	5.1	3.6	1.7	2.5	0.0	0.0	17.1	13.5	14.3	3.2	4.9	3.1	3.4	1.9
9	Kent	1.5	2.3	5.5	5.0	7.3	8.8	6.5	3.0	3.5	0.0	30.5	0.0	6.9	2.7	2.7	2.3	2.3	2.0	1.7
22	Kent	0.3	2.2	7.3	9.7	11.1	10.4	6.9	3.6	5.6	0.0	0.0	5.4	4.3	9.7	8.3	3.9	2.8	2.4	2.3
1	Kent	1.1	3.1	4.1	2.2	2.2	2.3	2.1	1.5	2.8	0.0	0.0	43.5	11.9	7.1	5.5	3.7	2.3	1.6	0.9
2	Kent	6.7	7.1	7.6	11.7	14.1	13.1	10.5	7.4	18.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10	Kent	1.3	3.0	8.3	9.3	14.0	17.7	12.9	6.0	7.5	0.0	0.0	0.0	0.0	0.0	0.0	3.1	5.5	4.0	3.1
11	Kent	7.4	3.3	3.7	2.2	2.2	2.5	2.0	1.1	1.8	0.0	0.0	27.2	7.2	9.2	7.4	5.8	2.4	2.3	1.9
12	Kent	3.9	4.0	3.9	2.9	2.1	1.5	0.9	0.4	0.4	0.0	0.0	5.3	22.9	4.9	10.1	8.9	5.9	6.1	3.8
13	Kent	8.5	9.6	10.9	11.6	13.4	14.2	11.1	6.4	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
14	Essex	2.3	2.4	0.9	0.3	0.3	0.4	0.3	0.2	0.2	0.0	0.0	16.9	20.2	17.6	16.2	9.6	5.2	3.2	1.5
15	Essex	2.2	12.3	39.9	12.7	6.7	7.9	7.5	4.5	5.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16	Essex	1.7	16.3	27.1	9.7	9.3	11.9	10.5	5.7	7.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
17	Essex	2.3	12.8	17.5	11.4	12.2	13.8	11.5	6.9	10.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
18	Essex	2.1	11.7	37.9	13.6	7.6	8.6	7.6	4.4	5.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
19	Essex	2.6	24.9	34.7	7.3	6.3	7.9	6.8	3.6	4.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20	Essex	5.5	26.5	17.0	5.2	6.0	8.4	7.2	3.8	5.0	0.0	0.0	0.0	0.0	0.0	0.0	7.3	3.2	1.1	0.7
21	Essex	5.5	36.2	19.6	5.6	6.3	7.7	7.0	4.3	6.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Station	Location																					
ID		2000	1400	1000	710	500	355	250	180	125	90	63	44.19	31.25	22.097	15.625	11.049	7.813	5.524	3.906	2.762	1.953
		to 2800	to 2000	to 1400	to 1000	to 710	to 500	to 355	to 250	to 180	to 125	to 90	to 63	to 44.19	to 31.25	to 22.097	to 15.625	to 11.049	to 7.813	to 5.524	to 3.906	to 2.762
3	Kent	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	3.1	4.4	7.3	9.7	12.3	14.0	12.7	10.2	7.3	4.7	2.8
4	Kent	0.5	0.5	0.4	0.3	2.3	2.4	1.9	2.5	3.6	4.6	4.3	4.1	5.1	5.4	5.6	5.8	5.2	4.7	4.2	3.3	2.5
5	Kent	0.7	0.7	0.5	1.8	2.2	1.3	0.4	0.6	1.7	2.7	1.9	1.3	1.6	1.9	2.3	2.7	2.6	2.4	2.0	1.4	1.0
6	Kent	0.4	0.4	0.3	1.0	1.0	1.4	0.9	0.4	0.9	1.8	1.7	1.4	1.6	1.8	2.0	2.1	2.0	1.8	1.4	1.0	0.7
7	Kent	1.3	1.2	1.0	0.0	0.0	0.0	0.0	0.1	1.7	4.0	3.7	2.7	3.0	3.1	3.5	4.1	4.4	4.4	4.0	3.1	2.1
8	Kent	1.3	1.2	1.0	1.3	1.3	1.6	0.8	0.9	2.3	3.3	2.5	1.8	2.0	2.1	2.4	2.6	2.4	2.0	1.5	1.0	0.6
9	Kent	1.4	1.2	0.9	0.4	1.6	0.9	0.6	0.7	1.5	2.9	2.6	2.2	2.8	3.3	4.0	4.5	4.3	3.7	2.8	1.9	1.1
22	Kent	1.5	1.4	0.8	0.0	0.0	0.0	0.3	0.8	1.4	3.5	3.8	3.8	6.0	5.5	5.6	5.6	4.8	3.9	3.0	2.1	1.4
1	Kent	0.6	0.5	0.3	0.2	0.5	0.6	0.5	1.0	2.1	2.4	1.6	1.1	1.1	1.1	1.1	1.2	1.1	1.1	1.0	0.8	0.6
2	Kent	0.0	0.0	0.0	0.5	2.8	3.4	3.3	3.4	3.7	3.9	3.8	4.9	6.8	7.0	7.0	6.9	6.2	5.6	4.9	4.1	3.4
10	Kent	2.0	1.5	1.0	0.0	0.0	0.2	1.1	1.1	1.9	4.1	4.2	4.1	5.2	6.2	7.7	9.0	8.6	7.3	5.5	3.7	2.3
11	Kent	1.6	1.6	1.4	2.3	3.6	4.3	3.1	1.7	1.6	2.2	1.6	1.1	1.1	1.1	1.1	1.3	1.2	1.1	0.9	0.7	0.5
12	Kent	3.2	3.0	2.1	1.7	2.1	2.1	1.7	1.9	2.2	2.1	1.7	1.5	1.3	1.2	1.0	0.9	0.7	0.5	0.4	0.2	0.1
13	Kent	0.0	0.0	0.0	1.8	3.4	4.3	4.2	4.5	5.1	5.6	5.3	5.3	6.3	6.5	6.9	7.3	6.9	6.1	5.1	3.8	2.6
14	Essex	0.8	0.4	0.3	0.3	0.5	0.9	1.4	1.4	1.1	0.7	0.3	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.1	0.1	0.1
15	Essex	0.0	0.0	0.0	0.0	0.4	1.3	0.9	2.3	10.1	21.6	18.3	8.2	4.5	3.4	3.3	3.8	4.1	4.0	3.5	2.7	1.8
16	Essex	0.0	0.0	0.0	0.0	0.4	1.0	0.7	3.4	12.9	17.1	10.0	5.1	4.6	4.4	4.9	5.8	6.0	5.7	4.8	3.4	2.3
17	Essex	0.0	0.0	0.0	0.1	0.7	1.3	1.0	3.8	9.0	10.5	7.0	5.4	6.0	5.9	6.3	7.0	6.8	6.2	5.3	4.0	2.9
18	Essex	0.0	0.0	0.0	0.0	0.8	1.3	0.8	2.4	9.3	20.3	17.6	8.5	5.0	3.8	3.8	4.3	4.3	4.1	3.5	2.6	1.8
19	Essex	0.0	0.0	0.0	0.4	1.0	1.7	0.9	4.8	20.0	23.8	10.9	4.1	3.3	3.0	3.3	3.9	4.0	3.7	3.1	2.2	1.4
20	Essex	0.3	0.1	0.1	1.0	1.5	2.2	3.3	10.6	15.8	11.7	5.3	2.6	2.6	2.8	3.3	4.1	4.3	4.0	3.3	2.3	1.5
21	Essex	0.0	0.0	0.0	0.1	1.8	1.2	4.3	14.5	21.7	14.6	5.0	2.7	2.8	3.0	3.3	3.8	3.9	3.7	3.3	2.5	1.8

Station	Location												
ID		1.381	0.977	0.691	0.488	0.345	0.244	0.173	0.122	0.086	0.061	0.043	0.01
		to 1.953	to 1.381	to 0.977	to 0.691	to 0.488	to 0.345	to 0.244	to 0.173	to 0.122	to 0.086	to 0.061	to 0.043
3	Kent	1.8	1.3	1.3	1.4	1.5	1.4	1.0	0.7	0.4	0.1	0.0	0.0
4	Kent	1.8	1.2	1.2	1.5	1.8	1.6	1.0	0.5	0.1	0.0	0.0	0.0
5	Kent	0.6	0.5	0.4	0.5	0.5	0.4	0.3	0.2	0.1	0.0	0.0	0.0
6	Kent	0.4	0.3	0.3	0.3	0.3	0.3	0.2	0.1	0.1	0.0	0.0	0.0
7	Kent	1.4	1.0	0.9	1.0	1.0	0.9	0.7	0.5	0.3	0.1	0.0	0.0
8	Kent	0.4	0.3	0.3	0.3	0.3	0.3	0.2	0.2	0.1	0.0	0.0	0.0
9	Kent	0.7	0.5	0.4	0.5	0.4	0.4	0.3	0.2	0.1	0.0	0.0	0.0
22	Kent	1.0	0.8	0.7	0.7	0.7	0.6	0.5	0.3	0.2	0.1	0.0	0.0
1	Kent	0.5	0.4	0.3	0.3	0.3	0.3	0.2	0.2	0.1	0.0	0.0	0.0
2	Kent	3.0	2.6	2.4	2.3	2.3	2.1	1.6	1.1	0.7	0.3	0.0	0.0
10	Kent	1.4	1.0	0.9	0.9	0.8	0.8	0.6	0.5	0.3	0.1	0.0	0.0
11	Kent	0.4	0.3	0.3	0.2	0.2	0.1	0.1	0.1	0.1	0.0	0.0	0.0
12	Kent	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
13	Kent	1.7	1.2	1.0	1.0	1.1	1.1	0.8	0.6	0.3	0.1	0.0	0.0
14	Essex	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
15	Essex	1.3	0.9	0.7	0.6	0.6	0.5	0.5	0.4	0.2	0.1	0.0	0.0
16	Essex	1.5	1.1	0.9	0.8	0.8	0.7	0.6	0.5	0.3	0.1	0.0	0.0
17	Essex	2.1	1.6	1.3	1.2	1.2	1.1	0.9	0.7	0.4	0.2	0.0	0.0
18	Essex	1.3	0.9	0.7	0.6	0.6	0.5	0.4	0.3	0.2	0.1	0.0	0.0
19	Essex	1.0	0.7	0.6	0.5	0.5	0.4	0.3	0.3	0.2	0.1	0.0	0.0
20	Essex	1.0	0.8	0.6	0.6	0.5	0.5	0.4	0.3	0.2	0.1	0.0	0.0
21	Essex	1.3	1.0	0.8	0.7	0.6	0.6	0.5	0.4	0.2	0.1	0.0	0.0

THE LONDON RESORT ♦ SUBTIDAL BENTHIC SURVEY REPORT

Appendix 8.0 Macrobenthic data for subtidal grab samples

Т	ΉΕ	LO	N

DEME Company relation of a strategy Image Image <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>									-								1									
DAME Benkink Image Image <t< td=""><td></td><td>Station</td><td></td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td><td>8</td><td>9</td><td>10</td><td>11</td><td>12</td><td>13</td><td>14</td><td>15</td><td>16</td><td>17</td><td>18</td><td>19</td><td>20</td><td>21</td><td>22</td><td>Total</td></t<>		Station		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	Total
Distory Intrans Image				0	-	-	-	0	0		-	0	0	0	0	-				0	-	-	0	0	0	N/A N/A
Finded Benedick <				ů	-	-	- °	-	0		-	v	•		- v	, °	~ ~		- v	22	-	-	F	0	0	28
Phile Sove brage Sove brage Sove brage Sove brage <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td>-</td> <td>-</td> <td>•</td> <td></td> <td>1</td> <td>-</td> <td>-</td> <td>Ŭ Ŭ</td> <td>, v</td> <td>0</td> <td>-</td> <td>-</td> <td>0</td> <td>0</td> <td>1</td> <td>33</td>				-	-	-	-	-			-	-	•		1	-	-	Ŭ Ŭ	, v	0	-	-	0	0	1	33
Dirace Loope has Col O			aggregate	0	-	-	- °	0	0		-	0	0	0	1	-		1	0	48	-	-	0	0	0	50
DEE Open Processes O		-		0	0) 1	0	1	2	0	Frag.	2	0	0	0	0	0 0	0	0	0	0	0	0	0	0	6
DAC1 Main succine Mode Main Succine Main Succine <th< td=""><td></td><td>-</td><td></td><td>0</td><td>0</td><td>0 0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>i v</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>) 1</td><td>0</td><td>0 0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td></th<>		-		0	0	0 0	0	0	0	0	i v	0	0	0	0	0) 1	0	0 0	0	0	0	0	0	0	1
Debbs haphys incrit 0 0 1 1 0 1 1 0 1 1 0 0 0 0 0 <th< td=""><td>P0462</td><td>Hediste diversicolor</td><td></td><td>0</td><td>0</td><td>0 0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>18</td><td>0</td><td>17</td><td>7 0</td><td>0</td><td>0 0</td><td>13</td><td>13</td><td>0</td><td>0</td><td>0</td><td>0</td><td>61</td></th<>	P0462	Hediste diversicolor		0	0	0 0	0	0	0	0	0	0	0	18	0	17	7 0	0	0 0	13	13	0	0	0	0	61
Phefe wirking torologyi	P0471	Alitta succinea		10	10) 18	1	5	28	1	1	13	1	46	6	8	3 21	0	0 0	24	0	0	Frag.	0	56	
Physical basis Description by a proper basis <thdescriptic basis<="" proproper="" th=""> <thdescription a="" by="" prope<="" td=""><td></td><td>Nephtys</td><td>juvenile</td><td>0</td><td>0</td><td>) 1</td><td>1</td><td>0</td><td>1</td><td>2</td><td>3</td><td>0</td><td>0</td><td>2</td><td>0</td><td>0</td><td>) 2</td><td>7</td><td>4</td><td>0</td><td>Frag.</td><td>6</td><td>0</td><td>0</td><td>0</td><td>20</td></thdescription></thdescriptic>		Nephtys	juvenile	0	0) 1	1	0	1	2	3	0	0	2	0	0) 2	7	4	0	Frag.	6	0	0	0	20
Bindsi Deputy deputy definition Deputy deputy deputy definition Deputy deputy defi				ů			-	-	0		-	0	0	0	-	-	0 0	Ŭ Ŭ	, v	0	-	-	0	7	0	12
Physical contral Physical contral<		-		0		-	- °	, v	0		-	°	0	0			4 0	ů	0 0	0	-	-	0	0	0	4
PP72P Dysploy briggers C			aggregate	0	-	-	Ŭ Ŭ	, v		, i	°	v	0	0	, v		· ·	0	0 0	0	-	-	0	0	0	4
Prove Sinutlayo C C <t< td=""><td></td><td>,</td><td></td><td></td><td>-</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>80</td><td></td><td></td><td></td><td></td><td>~ ~</td><td></td><td>-</td><td>-</td><td>4</td><td>0</td><td>62</td><td></td></t<>		,			-		1						0	80					~ ~		-	-	4	0	62	
PASS Partor particular No No <td></td> <td></td> <td></td> <td>ů</td> <td></td> <td><u> </u></td> <td>Ŭ Ŭ</td> <td>-</td> <td>•</td> <td>ľ</td> <td>°</td> <td>v</td> <td>0</td> <td>0</td> <td></td> <td>-</td> <td></td> <td>v</td> <td>•</td> <td>0</td> <td>-</td> <td>-</td> <td>0</td> <td>0</td> <td>0</td> <td>15 928</td>				ů		<u> </u>	Ŭ Ŭ	-	•	ľ	°	v	0	0		-		v	•	0	-	-	0	0	0	15 928
Problem Copyete Copyete <t< td=""><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td>0</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>0</td><td>40</td><td></td><td></td><td>1</td><td>-</td><td>-</td><td></td><td>-</td><td>•</td><td>с 1</td><td>103</td><td>402</td><td>920 244</td></t<>		· · · · · · · · · · · · · · · · · · ·		0		-					-	-	0	40			1	-	-		-	•	с 1	103	402	920 244
Photon Netwoorkson Afflorms N <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>0</td> <td>0</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>40</td> <td></td> <td></td> <td>4</td> <td>103</td> <td>0</td> <td>244</td>				0			-	-		-	-	-	0	0		-				40			4	103	0	244
Pints Solubing sprudes - 0				ů	-		- °	-	1	-	-	°	1			- °	· ·	Ŭ Ŭ	, v	0	-	-	0	1	1	11
P112 Advances Marcans constrain Marcans constraint Marcans constra				ů	-				0		-	v	0		-	-		0	v	0	-		0	0	0	1
Physics Physics Index contains		•		0			0	-	2		-	-	0	0	-	-		0	0	0	-	-	0	0	4	8
PhyP Salishis constand Image of the second Salishis constand Image of the second Salishis constand Salishishis constand Salishis constand <th< td=""><td></td><td>•</td><td></td><td>0</td><td>0</td><td>0 0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>) 1</td><td>0</td><td>0 0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td></th<>		•		0	0	0 0	0	0	0	0	0	0	0	0	0	0) 1	0	0 0	0	0	0	0	0	0	1
P146 Logragade Page O	P1479	Baltidrilus costatus		0	0	00	0	0	0	0	0	0	0	0	14	0	0 0	0	0 0	0	0	0	0	0	0	
P1406 Cubic Object Networksen O O O O </td <td></td> <td>Tubificoides benedii</td> <td></td> <td>0</td> <td>0</td> <td>) 1</td> <td>0</td> <td>0</td> <td>0</td> <td>, i</td> <td>-</td> <td>0</td> <td>Frag.</td> <td>0</td> <td>1</td> <td></td> <td>) 5</td> <td>8</td> <td>8 81</td> <td>16</td> <td>1633</td> <td>1</td> <td>4</td> <td>4</td> <td>0</td> <td>1754</td>		Tubificoides benedii		0	0) 1	0	0	0	, i	-	0	Frag.	0	1) 5	8	8 81	16	1633	1	4	4	0	1754
Piso: Exclyreadeb No			aggregate	Ů			Ŭ Ŭ	-	0		-	-	0	0	1	1	-	Ŭ Ŭ	0 0	0	-	-	0	4	0	16
Concel Acari Image: Concel Acari Image: Concel				-			-	-	1				0	0	- v	- °	~ ~	Ŭ Ŭ	0 0	0	-	-	0	0	20	121
NOTS Sessin Upwerle 1 0 939 0 2 2 0 589 60 0				-		-	-	-	•				0	0	-	-	-	Ŭ Ŭ	0 0	0	-	-	0	0	0	0
R006 Austromius models C O				0			-	-			-	-	0	, v		-		Ŭ Ŭ	0 0	0	-	-	0	0	0	1
R0078 Amphabatinus myroviar 6 3 162 0 122 2 2 2 1 0 0 1 0 0 0 0<			juvenile	1		-		- v					0		1	1	~ ~	, v	0 0	0	-	-	0	0	180	
R2432 Existical accelerational C C C C </td <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>Ŭ Ŭ</td> <td>, v</td> <td>•</td> <td></td> <td>-</td> <td>°</td> <td>•</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>, v</td> <td>~ ~</td> <td>v</td> <td>-</td> <td>_</td> <td>0</td> <td>0</td> <td>15</td> <td>0 1898</td>				-	-	-	Ŭ Ŭ	, v	•		-	°	•		-	-	-	, v	~ ~	v	-	_	0	0	15	0 1898
R2488 PodeCopida O O <		• •		-		-		-	129			-	2	015	21			Ŭ Ŭ	· ·	10			0	1	10	1090
S0074 Mecopologies stabeleri 2 0 </td <td></td> <td></td> <td></td> <td>0</td> <td></td> <td>~ ~</td> <td></td> <td>- v</td> <td>0</td> <td>ľ – ľ</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>- °</td> <td>, °</td> <td>, v</td> <td></td> <td>16</td> <td>•</td> <td>v</td> <td>0</td> <td></td> <td>0</td> <td>16</td>				0		~ ~		- v	0	ľ – ľ		0	0	0	0	- °	, °	, v		16	•	v	0		0	16
S0464 Gammaridae juenele 0		•		2			-	-	1		-	-	0	0	-	-	-	, v	0	0	-	_	0	0	0	
Solda Commania Control Control <thcontrol< th=""> Control <thc< td=""><td></td><td>· ·</td><td>juvenile</td><td>0</td><td>0</td><td>0 0</td><td>0</td><td>-</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>) 1</td><td>0</td><td>0</td><td>0</td><td>-</td><td>_</td><td>0</td><td>0</td><td>0</td><td></td></thc<></thcontrol<>		· ·	juvenile	0	0	0 0	0	-	0	0	0	1	0	0	0	0) 1	0	0	0	-	_	0	0	0	
SD525 Wells palmata v 0	S0483	Gammarus zaddachi	· ·	0	0	0 0	0	0	1	0	0	0	0	0	0	0	0 0	0	0 0	0	0	0	0	0	0	1
Sofial Accouncyphum insides 0<	S0522	Melita nitida		0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0 0	0	0	0	0	0	1	1
Sobist Appropriate Mature 0		Melita palmata		0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0 0	0	-	_	0	0	0	N/A
Sobe 6 Corophium volutator 0 44 10 21 10 11 1 30 0 4 0 188 3 11 10 257 981 Frag 0				-		-	Frag.		14				0		-	-	-	Ŭ Ŭ	0 0	0	-	_	0	0	10	-
Sobes Cyntruc arinata 1 1 7 0 4 4 0 0 3 0 6 1 0 19 0 0 65 1 0				0	, i	~ ~		Ŭ Ŭ	3	ľ – ľ	- v	v	0	16	0	Ŭ Ŭ		0	0 0	0	0	- ·	0	0	0	19
Expose bit action constraint Multiple <tht< td=""><td></td><td></td><td></td><td>0</td><td>44</td><td>1 10</td><td></td><td></td><td>10</td><td></td><td></td><td></td><td>0</td><td>4</td><td>0</td><td>1</td><td></td><td></td><td>10</td><td></td><td></td><td>Ŭ.</td><td>0</td><td>0</td><td>24</td><td></td></tht<>				0	44	1 10			10				0	4	0	1			10			Ŭ.	0	0	24	
S0037 kötse emarginata 0 1 0				1	1				4	, °	° °	°	0	6	1	- °			0 0			v	0	0	6	
S1315 Palaemon macrodacyluz 0<				-	-		-	-				-	0	, v	-	-		, v	· ·	16			-	0	0	17
State Crangon crangon 0				-		· ·	-	-	0	, °	°	v	0	0	-	-	~~	Ů		0	•	°	0	0	0	
Totoomidae Iarva 0				-	-		-		4 0				0	0	-	-	-	Ŭ Ŭ	· ·	0	-	-	0	1	0	4
W0385 Peringia ulvae 1 0			larva	ů			-	-					•		-	-		, v	, <u> </u>	0	-		0	0	0	
W1696 Mytilus edulis juvenile 0 0 2 0 1 0 0 9 0 <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td>-</td> <td>-</td> <td></td> <td>2</td> <td>· ·</td> <td>0</td> <td></td> <td></td> <td>1</td> <td>0</td> <td>0</td> <td></td>				1					0				•		-	-		2	· ·	0			1	0	0	
M17E1 Megallana gigas 0 0 0 7 0 0 0 2 0			juvenile	0	0	2	0	0	1				0	1	0	0	9	0	0 0	0	-	_	0	0	0	13
W1781 Magallana gigas juvenile 0 </td <td>W1761</td> <td>Magallana gigas</td> <td></td> <td>0</td> <td>0</td> <td>00</td> <td>0</td> <td>0</td> <td>7</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>2</td> <td>0</td> <td>0</td> <td>0 0</td> <td>0</td> <td>00</td> <td>0</td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>9</td>	W1761	Magallana gigas		0	0	00	0	0	7	0	0	0	0	2	0	0	0 0	0	00	0			0	0	0	9
W2068 Scrobicularia plana juvenile 0 <	W1761	Magallana gigas	juvenile	-			-		0				Ŭ	Ŭ Ŭ	-	-	-	Ŭ Ŭ	, v	0	-	-	0	v	0	v .
W2068 Scrobicularia plana juvenile 0 <				-				-					0	0	-	-			0	0			0	0	0	
W2116 Ruditapes philippinarum juvenile 0				-	-	-	Ŭ Ŭ	, i					0	0	, v	- v	-	0	0 0	0			0	0	0	5
W2201 Teredo navalis 0				-			Ŭ Ŭ						-	-	-	-		Ŭ Ŭ	~ ~	v		_	•	, v	0	
Y0086 Arachnidium 0			juvenile						0				0	0	-	-	-	Ŭ Ŭ	, v	0			0	0	0	-
Y0096 Anguinella palmata 0 <td></td> <td></td> <td></td> <td>, v</td> <td>-</td> <td></td> <td>Ŭ Ŭ</td> <td>, v</td> <td>2</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td>, v</td> <td></td> <td>-</td> <td>0</td> <td>, U</td> <td>0</td> <td>-</td> <td>_</td> <td>0</td> <td>0</td> <td>0</td> <td>2 N/A</td>				, v	-		Ŭ Ŭ	, v	2				0		, v		-	0	, U	0	-	_	0	0	0	2 N/A
Y0172 Conopeum reticulum 0				-			-						-	-	-	-		-	· ·	v			U	0	0	
Y0176 Einhornia crustulenta P <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>Ŭ,</td> <td>, v</td> <td>v</td> <td>-</td> <td></td> <td></td> <td>-</td> <td>0</td> <td></td>				-			-								-	-		Ŭ,	, v	v	-			-	0	
Y0177 Electra monostachys 0				-		-	-			-			-		ů			-	, °	v	-	_	~	v	0	
ZD0151 Molgula manhattensis 0 <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>0</td> <td>0</td> <td></td> <td></td> <td>0</td> <td>.0</td> <td>0</td> <td>N/A</td>													-					-	0	0			0	.0	0	N/A
ZM0655 Polysiphonia 0				0	-		0		0				0	0	0	-	-	0	0	0	-	-	0	0	0	0
ZR0376 Fucus juvenile 0				0			0	0	0	0			0	0	0	0	0 0	0	0 0	0	0		Р	0	0	N/A
ZS0145 Blidingia minima 0	ZR0376	Fucus	juvenile	0	0	00	0	0	0	0		0	0	0	0	0	00	0	00	0	0	0	0	0	0	N/A
ZX Bryophyta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				-	-	-	Ŭ Ŭ	- v	0			, v	-	-	-	-	-	0	0 0	0	-	_	0	0	0	N/A
ZX Bryophyta 0				-			-	- v	•				•	- v	-	-	-	, v	, <u> </u>	0	-	_	0	v	0	1471
ידא וופיימים ביו ביו מו	ZX			-							-		•	· ·	, v	-		Ŭ Ŭ	, v	0			~	v	0	
	ZX	Lemna		0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0 0	0	0	0	Р	0	0	N/A

Appendix 9.0 Macrobenthic data for wall scrape samples

Code	Station		6	7	Total
D0285	Cordylophora caspia		0	0	N/A
D0433	Sertularia		0	0	N/A
D0662	Actiniaria		0	0	N/A
HD0001	Nematoda		0	0	N/A
P0118	Eteone longa	aggregate	0	0	N/A
P0123	Eteone lighti		0	0	N/A
P0262	Glycera oxycephala		0	0	N/A
P0462	Hediste diversicolor		0	0	N/A
P0471	Alitta succinea		0	0	N/A
P0494	Nephtys	juvenile	0	0	N/A
P0499	Nephtys hombergii		0	0	N/A
P0730	Boccardiella ligerica		0	0	N/A
P0752	Polydora ciliata	aggregate	0	0	N/A
P0753	Polydora cornuta		0	0	N/A
P0776	Pygospio elegans		0	0	N/A
P0798	Streblospio		0	0	N/A
P0847	Tharyx species A		0	0	N/A
P0906	Capitella		0	0	N/A
	Heteromastus				
P0917	filiformis		0	0	N/A
P1117	Sabellaria spinulosa		0	0	N/A
P1127	Alkmaria romijni		0	0	N/A
P1235	Polycirrus		0	0	N/A
P1479	Baltidrilus costatus		0	0	N/A
P1490	Tubificoides benedii		0	0	N/A
P1494	Tubificoides diazi	aggregate	0	0	N/A
	Tubificoides				
P1495	heterochaetus		0	0	N/A
P1501	Enchytraeidae		0	0	N/A
Q0054	Acari		0	0	N/A
R0015	Sessilia	juvenile	10	0	10
	Austrominius				
R0068	modestus		33	0	33
	Amphibalanus				
R0078	improvisus		0	0	N/A
R2432	Eusarsiella zostericola		0	0	N/A
R2458	Podocopida		0	0	N/A
	Mesopodopsis		-	-	/ .
S0074	slabberi		0	0	N/A
S0464	Gammaridae	juvenile	0	0	N/A
S0483	Gammarus zaddachi		0	0	N/A
S0522	Melita nitida		0	0	N/A
S0525	Melita palmata		0	0	N/A

	Monocorophium				
S0612	insidiosum		0	0	N/A
	Apocorophium				
S0613	lacustre		0	0	N/A
S0616	Corophium volutator		0	0	N/A
S0805	Cyathura carinata		0	0	N/A
S0936	Idotea chelipes		0	0	N/A
S0937	Idotea emarginata		0	0	N/A
	Palaemon				
S1315	macrodactylus		0	0	N/A
S1385	Crangon crangon		0	0	N/A
T0003	Chironomidae	larva	1	0	1
W0385	Peringia ulvae		0	0	N/A
W1696	Mytilus edulis	juvenile	0	0	N/A
W1761	Magallana gigas		0	0	N/A
W1761	Magallana gigas	juvenile	0	0	N/A
W2029	Limecola balthica		0	0	N/A
W2068	Scrobicularia plana		0	0	N/A
W2068	Scrobicularia plana	juvenile	0	0	N/A
	Ruditapes				
W2116	philippinarum	juvenile	0	0	N/A
W2201	Teredo navalis		0	0	N/A
Y0086	Arachnidium		0	0	N/A
Y0096	Anguinella palmata		0	0	N/A
Y0172	Conopeum reticulum		0	0	N/A
Y0176	Einhornia crustulenta		0	0	N/A
Y0177	Electra monostachys		0	0	N/A
ZD0151	Molgula manhattensis		0	0	N/A
ZM0655	Polysiphonia		0	0	N/A
ZR0376	Fucus	juvenile	Р	0	N/A
ZS0144	Blidingia marginata		0	0	N/A
ZS0145	Blidingia minima		Р	Р	N/A
ZX	Bryophyta		0	0	N/A
ZX	Lemna		0	0	N/A

Appendix 10.0 Biomass data for subtidal grab samples

Cada	Chatian		Ch 01	C+ 02	G 00	Ch 04	C+ 07	C+ 0C	Ch 07	Ch 00	Ch 00	C+ 10	C+ 11	Ch 12	Ch 12	Ch 14	Ch 15	Ch 1C	Ch 17	Ch 10	C+ 10	Ch 20	Ch 21	G4 22
	Station		St_01	St_02	St_03	St_04	St_05	St_06	St_07	St_08	St_09	St_10	St_11	St_12	St_13	St_14	St_15	St_16	St_17	St_18	St_19	St_20	St_21	St_22
	Cordylophora caspia Sertularia																							
D0433	Actiniaria															9.6431			0.3022					
HD0001	Nematoda							0.0001	0.0007					0.0001	0.0001	0.0001	0.0001		0.3022	0.0016				0.0001
		aggregate						0.0001	0.0007					0.0001	0.0001	0.0001	0.0002		0.0288	0.0010				0.0001
	Eteone lighti				0.0009		0.0004	0.0018		0.001	0.0026													
	Glycera oxycephala															0.0018								
P0462	Hediste diversicolor												0.003		0.1648				0.4366	0.1373				
P0471	Alitta succinea		0.0075	0.1484	0.139	0.0111	0.0345	0.6068	0.0006	0.0001	0.1153	0.0028	0.0313	0.0539	0.0282	0.5088			0.3938			0.0003		1.3009
P0494	Nephtys	juvenile			0.0039	0.0095		0.004	0.0027	0.0145			0.004			0.0066	0.0321	0.0066		0.0232	0.0142			
P0499	Nephtys hombergii																			0.0634			0.0323	
P0730	Boccardiella ligerica														0.0024									
P0752	Polydora ciliata	aggregate													0.0004									
P0753	Polydora cornuta		0.0012		0.0034	0.0007	0.002	0.0068		0.0001	0.0064		0.0085	0.0034	0.0008	0.0052			0.0088			0.0012		0.0212
P0776	Pygospio elegans															0.0027								
	Streblospio				0.0036	0.0024	0.0003	0.005	0.0005	0.0005	0.045	0.0001	0.0032	0.0069	0.0008	0.0137	0.0075		0.0032			0.0009		0.099
	Tharyx species A															0.0044	0.0037	0.0009	0.0176	0.0738	0.0003	0.0024	0.0567	
P0906	Capitella															0.0002								
P0917	Heteromastus filiformis					0.0006		0.0027				0.0093	0.0036			0.0215	0.0001			0.1385	0.0102		0.0123	0.001
	Sabellaria spinulosa				0.0000											0.0001								0.0016
	Alkmaria romijni				0.0003			0.0009								0.0000								0.0016
	Polycirrus Baltidrilus costatus													0.0008		0.0039]
P1479 P1490	Tubificoides benedii				0.0013							0.0002		0.0008		0.0031	0.0044	0.0579	0.0016	1.0311	0.0002	0.0004	0.0044	
P1490 P1494		aggregate	0.0004		0.0013							0.0002		0.0001		0.0031	0.0044	0.0379	0.0010	1.0511	0.0002	0.0004	0.0044	
P1494	Tubificoides heterochaetu	aggiegate	0.0004		0.002	0.0024		0.0001	0.0018	0.0001	0.0064			0.0003									0.0004	0.0024
	Enchytraeidae				0.002	0.0024		0.0001	0.0010	0.0001	0.0004													0.0024
Q0054	Acari															0.0001								
	Sessilia	juvenile																						
	Austrominius modestus	,																						
	Amphibalanus improvisus																							
	Eusarsiella zostericola									0.0001				0.0001									0.0004	0.0001
R2458	Podocopida																		0.0016					
S0074	Mesopodopsis slabberi		0.005					0.007																
S0464	Gammaridae	juvenile									0.0048					0.0001								
S0483	Gammarus zaddachi							0.0046																
S0522	Melita nitida																							0.001
	Melita palmata																							
	Monocorophium insidiosu				0.0007	0.0014		0.0035		0.0001	0.013													0.0073
S0613	Apocorophium lacustre							0.0058					0.0016											
	Corophium volutator			0.0151	0.0029	0.0022	0.2616	0.0083	0.0003	0.0001	0.0126		0.0011		0.1131	0.0006	0.0116	0.0041	0.0632	0.6353	0.0001			0.0118
	Cyathura carinata		0.0043	0.0068	0.0049		0.0232	0.0166			0.0135		0.01	0.0005		0.0035			0.1245	0.0051				0.0148
	Idotea chelipes			0.0161												0.0007			0.0016					
	Idotea emarginata			0.0161				0.2715																
	Palaemon macrodactylus Crangon crangon							0.2715			0.7546												0.2042	
	Chironomidae	larva									0.7540												0.2042	
	Peringia ulvae	idivd	0.0027														0.0005					0.0009		
	Mytilus edulis	juvenile	0.0027		0.0055			0.0012					0.0412			0.0363	5.0005					0.0009		
	Magallana gigas	Jarchille			0.0000			63.328					3.2647			5.0505								
	Magallana gigas	juvenile						55.520					5.2047											
	Limecola balthica	,															0.0019			0.0016				
	Scrobicularia plana																			2.0178				
	Scrobicularia plana	juvenile															0.0848			0.1414				1
		juvenile														0.0605								1
	Teredo navalis							0.0024																
	Arachnidium																							
	Anguinella palmata																							
Y0172	Conopeum reticulum																							
	Einhornia crustulenta																							
	Electra monostachys]
	Molgula manhattensis]
	Polysiphonia																							
	Fucus	juvenile																						
	Blidingia marginata																							
	Blidingia minima]
ZX ZX	Bryophyta																							
	Lemna																							

THE LONDON RESORT ♦ SUBTIDAL BENTHIC SURVEY REPORT

Appendix 11.0 Biomass data for major groups

Subtidal samples: Kent project site

	1	2	9	10	11	12	13	3	4	5	6	7
Annelida	0.0091	0.1484	0.6268	0.0124	0.0536	0.067	0.1974	0.1544	0.0267	0.0372	0.6281	0.0056
Crustacea	0.0093	0.038	0.2377	-	0.0127	0.0006	0.1131	0.0085	0.0036	0.2848	0.3173	0.0003
Mollusca	0.0027	-	0.0807	-	3.3059	-	-	0.0055	-	-	63.3316	-
Others	-	-	-	-	-	0.0001	0.0001	-	-	-	0.0001	0.0007
Total	0.0211	0.1864	0.9452	0.0124	3.3722	0.0677	0.3106	0.1684	0.0303	0.322	64.2771	0.0066

	8	9	22
Annelida	0.0163	0.1757	1.4261
Crustacea	0.0003	0.7985	0.035
Mollusca	-	-	-
Others	-	-	0.0001
Total	0.0166	0.9742	1.4612

Subtidal samples: Essex project site

	14	15	16	17	18	19	20	21						
Annelida	0.572	0.048	0.0654	0.8904	1.4673	0.0249	0.0052	0.1061						
Crustacea	0.0049	0.0116	0.0041	0.1909	0.6404	0.0001	-	0.2046						
Mollusca	0.0968	0.0872	-	-	2.1608	-	0.0009	-						
Others	9.6433	0.0001	-	0.3022	0.0016	-	-	-						
Total	10.317	0.1469	0.0695	1.3835	4.2701	0.025	0.0061	0.3107						

Appendix 12.0 SIMPER analysis results

Subtidal samples: Analysis results

SIMPER Similarity Percentages - species contributions

One-Way Analysis

Data worksheet Name: Datal Data type: Abundance Sample selection: All Variable selection: All

Parameters Resemblance: S17 Bray Curtis similarity Cut off for low contributions: 90.00%

Simprof groups allocated to each station

Sample	SIMPROF
St_01	а
St_02	а
St_10	e
St_11	b
St_12	b
St_14	b
St_03	b
St_06	b
St_09	b
St_22	b
St_13	d
St_05	d
St_15	g
St_16	g
St_19	g
St_20	g
St_17	с
St_18	h
St_21	h
St_04	F
St_07	f
St_08	f

Group a Average similarity: 49.37

Species	Av.Abund	Av.Sim	Sim/SD*	Contrib%	Cum.%
Alitta succinea	3.16	22.64	-	45.86	45.86
Amphibalanus improvisus	2.28	12.40	-	25.12	70.99
Einhornia crustulenta	1.00	7.16	-	14.51	85.50
Cyathura carinata	1.00	7.16	-	14.50	100.00

Group e

Less than 2 samples in group

Group b

Average similarity: 51.63

Species	Av.Abund	Av.Sim	Sim/SD*	Contrib%	Cum.%
Amphibalanus improvisus	12.73	8.84	1.25	17.12	17.12
Sessilia juvenile	10.65	8.64	1.32	16.73	33.84
Polydora cornuta	6.53	8.45	7.30	16.36	50.21
Streblospio	8.77	8.12	2.44	15.72	65.93
Alitta succinea	4.92	5.71	5.16	11.06	76.98
Cyanthura carinata	2.38	2.65	3.90	5.13	82.12
Corophium volutator	2.92	2.62	1.17	5.07	87.19
Einhornia crustulenta	1.00	1.55	4.95	3.00	90.19

Group d

Average similarity: 69.30

Species	Av.Abund	Av.Sim	Sim/SD*	Contrib%	Cum.%
Corophium volutator	13.77	44.13	-	63.68	63.68
Polydora cornuta	4.97	11.57	-	16.70	80.38
Alitta succinea	2.53	7.18	-	10.36	90.73

Group g Average similarity: 32.63

Species	Av.Abund	Av.Sim	Sim/SD	Contrib%	Cum.%
Tubificoides benedii	3.71	10.86	3.90	33.27	33.27
Tharyx 'species A'	1.66	8.25	3.19	25.27	58.54
Nephtys juvenile	1.77	7.55	0.84	23.14	81.68
Corophium volutator	1.62	2.49	0.41	7.62	89.30
Streblospio	2.24	1.84	0.41	5.65	94.95

Group c

Less than 2 samples in group

Group h

Average similarity: 22.13

Species	Av.Abund	Av.Sim	Sim/SD*	Contrib%	Cum.%
Tharyx 'species A'	9.23	13.58	-	61.34	61.34
Nephtys juvenile	2.44	3.65	-	16.51	77.85
Tubificoides benedii	21.21	3.27	-	14.77	92.62

Group g

Average similarity: 64.11

Species	Av.Abund	Av.Sim	Sim/SD	Contrib%	Cum.%
Tubificoides heterochaetus	3.22	16.83	1.45	26.25	26.25
Streblospio	2.30	13.48	7.08	21.03	47.28
Nephtys juvenile	1.38	8.41	4.41	13.12	60.40
Einhornia crustulenta	1.00	7.38	15.91	11.52	71.92
Alitta succinea	1.00	7.38	15.91	11.51	83.43
Corophium volutator	1.14	7.38	15.91	11.51	94.94

Group	а	b	С	d	е	f	g	h
b	73.55							
с	79.23	64.28						
d	62.20	69.17	57.13					
е	73.71	88.61	92.73	88.36				
f	72.88	74.34	88.31	72.71	72.81			
g	91.92	87.55	83.97	87.46	94.01	79.48		
h	93.45	92.34	75.38	84.88	95.23	94.85	83.31	

Subtidal samples: Average dissimilarity (%) between SIMPROF groups

Appendix 13.0 Subtidal sediment – chemical concentrations against thresholds

Exceedance of thresholds for chemicals in sediment. Cefas Contaminant Action Levels are chemical Action level 1 (cAL1) and Action level 2 (cAL2). If Cefas Guidelines are not available for a particular contaminant the OSPAR Guidelines have been used which are Effects Range Low (ERL) and Environmental Assessment Criteria (EAC). If neither guideline is available for a contaminant, the Canadian Guidelines have been used which are the interim sediment quality guidelines (ISQG) and probable effect level (PEL).

Sediment Chemical Threshold exceedance	Colour Coding
Below cAL1	
Between cAL1 and TEL/ISQG	
Above cAL1 and TEL but below PEL	
Above cAL1 and PEL but below cAL2/above	
cAL1 if no other threshold	
Above cAL2	

Subtidal samples: Kent project site (Stations 1 - 5). N/A = Non-applicable.

	Thresh	Threshold						Station			
Chemical	cAL1	cAL2	TEL/ISQG	PEL	ERL	LOD	1	2	3	4	5
Metals (mg/kg)											
Arsenic	20	100	7.24	41.6		1	6.1	14.7	14.1	16.1	68.4
Cadmium	0.4	5	0.676	4.21	12	0.1	0.09	0.29	0.51	0.23	0.9
Chromium	40	400	52.3	160	810	0.5	12.2	36.1	50.5	30.1	47.9
Copper	40	400	18.7	108	340	2	18.6	22.1	52.2	57	136
Mercury	0.3	3	0.13	0.7	1.5	0.01	0.14	0.04	0.78	0.16	4.59
Nickel	20	200	15.9	42.8		0.5	11.2	27.5	27.5	26.9	30.6

	Thresh	old					Station				
Chemical	cAL1	cAL2	TEL/ISQG	PEL	ERL	LOD	1	2	3	4	5
Lead	50	500	30.2	112	470	2	16.5	50.3	108	98	353
Zinc	130	800	124	271	1500	3	26.5	72.7	184	75	867
TBT (μg/kg)											
Tributyltin compounds	100	1000				5	0.008	<0.005	<0.005	<0.005	<0.005
DBT (μg/kg)											
Dibutyltin	100	1,000			190	5	<0.005	<0.005	0.02	<0.005	<0.005
PAH (μg/kg)											
Acenaphthene	100	NA	6.7	88.9		1	3.53	1.76	33.7	5.84	351
Acenaphthylene	100	NA	5.9	128		1	6.22	1.51	79.2	6.98	1430
Anthracene	100	NA	46.9	245	85	1	13.5	1.53	91.3	8.05	1620
Benzo[a]anthracene	100	NA	74.8	693	261	1	168	3.16	288	16.1	5150
Benzo[a]pyrene	100	NA	88.8	763	430	1	164	6.28	494	31	9690
Benzo[b]fluoranthene	100	NA				1	168	7.35	492	28	7750
Benzo[ghi]perylene	100	NA			85	1	103	6.82	438	30.6	6470
Benzo[e]pyrene	100	NA				1	140	6.22	416	28.5	6700
Benzo[k]fluoranthene	100	NA				1	76.3	3.01	244	11.6	5530
C1-naphthalenes	100	NA			155	1	30.1	5.95	117	15.7	755
C1-phenanthrene							66.3	7.73	162	18.9	1680
C2-naphthalenes	100	NA			150	1	35.8	5.86	104	17.6	737
C3-naphthalenes							39.7	5.06	84.8	11.7	719
Chrysene	100	NA	108	846	384	1	154	7.26	247	15.6	5980
Dibenzo[ah]anthracene	10	NA	6.2	135		1	33.1	<1	70.7	6.53	1450
Fluoranthene	100	NA	113	1494	600	1	175	15.1	528	31.1	12100

	Thresh	Threshold					Station				
Chemical	cAL1	cAL2	TEL/ISQG	PEL	ERL	LOD	1	2	3	4	5
Fluorene	100	NA	21.2	144		1	7.09	2.24	47	5.48	591
Indeno[1,2,3-cd]pyrene	100	NA			240	1	117	5.98	507	31.4	7260
Naphthalene	100	NA	34.6	391	160	1	7.35	2.44	64.3	7.36	825
Perylene	NA	NA	NA	NA		1	80.3	217	218	315	2670
Phenanthrene	100	NA	86.7	544	240	1	38.7	16.7	213	14.7	2300
Pyrene	100	NA	153	1398	665	1	155	12.9	500	30.4	9040
ТНС							37.3	<1	48.5	4.1	822
PCBs (µg/kg)	PCBs (μg/kg)										
sum of ICES 7	10	None				0.08	0.00112	0.00116	0.01	0.00586	0.00282
Sum of 25 congeners	20	200				0.08	0.00263	0.00283	0.02103	0.01362	0.00616
Organochlorine pesticides (µg/kg)											
alpha-Hexachlorcyclohexane							<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
beta-Hexachlorcyclohexane							<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
gamma-Hexachlorcyclohexane							<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Dieldrin	5		0.715	4.3	2	5	<0.0001	<0.0001	0.001	0.0006	0.0003
Hexachlorobenzene					20	2	<0.0001	<0.0001	<0.0001	0.0001	<0.0001
p,p'-Dichorodiphenyldicloroethylene							<0.0001	< 0.0001	0.0011	0.0007	0.0005
p,p'-Dichorodiphenyltrichloroethane	1		1.19	4.77		5	<0.0001	< 0.0001	0.0012	0.0005	0.0006
p,p'-Dichorodiphenyldicloroethane							< 0.0001	0.0002	0.0004	0.0034	0.004

	Thresh	old					Station				
Chemical	cAL1	cAL2	TEL/ISQG	PEL	ERL	LOD	6	7	8	9	10
Metals (mg/kg)	-				•	-					
Arsenic	20	100	7.24	41.6		1	33.9	19.8	15.2	42.8	32.7
Cadmium	0.4	5	0.676	4.21	12	0.1	3.19	0.38	0.37	3.16	0.63
Chromium	40	400	52.3	160	810	0.5	68.4	31	30.3	68.5	41.4
Copper	40	400	18.7	108	340	2	132	62.6	77.2	140	89.9
Mercury	0.3	3	0.13	0.7	1.5	0.01	2.44	0.42	0.41	3.58	0.32
Nickel	20	200	15.9	42.8		0.5	37.4	27.3	23.2	30.5	24.3
Lead	50	500	30.2	112	470	2	174	197	321	347	231
Zinc	130	800	124	271	1500	3	379	117	237	529	277
TBT (μg/kg)						•					
Tributyltin compounds	100	1000				5	<0.005	<0.005	<0.005	<0.001	0.034
DBT (μg/kg)		-			-						
Dibutyltin	100	1,000			190	5	0.014	0.048	0.024	<0.001	0.024
PAH (μg/kg)											
Acenaphthene	100	NA	6.7	88.9		1	317	59.3	25.1	703	20
Acenaphthylene	100	NA	5.9	128		1	875	70.7	68.2	1490	35.9
Anthracene	100	NA	46.9	245	85	1	1100	182	68.5	1960	57.2
Benzo[a]anthracene	100	NA	74.8	693	261	1	3100	370	169	6100	138
Benzo[a]pyrene	100	NA	88.8	763	430	1	5590	547	313	10700	246
Benzo[b]fluoranthene	100	NA				1	3970	515	308	6530	246
Benzo[ghi]perylene	100	NA			85	1	3200	414	285	5800	197

Subtidal samples: Kent project site (Stations 6, 7, 8, 9 and 10).

	Thresh	old					Station				
Chemical	cAL1	cAL2	TEL/ISQG	PEL	ERL	LOD	6	7	8	9	10
Benzo[e]pyrene	100	NA				1	3550	427	259	6530	212
Benzo[k]fluoranthene	100	NA				1	2610	236	167	4350	101
C1-naphthalenes	100	NA			155	1	680	217	88.7	1160	93.5
C1-phenanthrene							1390	219	102	3110	92.5
C2-naphthalenes	100	NA			150	1	647	178	72.2	1320	73
C3-naphthalenes							574	145	66.9	1640	61.7
Chrysene	100	NA	108	846	384	1	3110	312	184	6310	120
Dibenzo[ah]anthracene	10	NA	6.2	135		1	755	91.7	50.5	1410	40.3
Fluoranthene	100	NA	113	1494	600	1	7820	636	300	14100	260
Fluorene	100	NA	21.2	144		1	502	80.1	30.4	822	28.5
Indeno[1,2,3-cd]pyrene	100	NA			240	1	3560	483	337	6400	217
Naphthalene	100	NA	34.6	391	160	1	570	101	53.5	847	62.8
Perylene	NA	NA	NA	NA		1	1590	194	262	2710	101
Phenanthrene	100	NA	86.7	544	240	1	1580	288	134	2320	127
Pyrene	100	NA	153	1398	665	1	5640	568	289	10700	267
ТНС							961	186	56	997	179
PCBs (μg/kg)											
sum of ICES 7	10	None				0.08	0.01377	0.01798	0.01241	0.00951	0.11886
Sum of 25 congeners	20	200				0.08	0.02811	0.03721	0.02649	0.02016	0.21273
Organochlorine pesticides (µg/kg)											
alpha-Hexachlorcyclohexane							<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
beta-Hexachlorcyclohexane							0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001
gamma-Hexachlorcyclohexane							<0.0001	0.0001	<0.0001	<0.0001	<0.0001

	Thresh	old					Station				
Chemical	cAL1	cAL2	TEL/ISQG	PEL	ERL	LOD	6	7	8	9	10
Dieldrin	5		0.715	4.3	2	5	0.0002	0.0009	0.0013	0.0001	0.0005
Hexachlorobenzene					20	2	0.0006	0.0002	0.0002	0.0001	<0.0001
p,p'-Dichorodiphenyldicloroethylene							0.0101	0.0009	0.0012	0.0045	0.0006
p,p'-Dichorodiphenyltrichloroethane	1		1.19	4.77		5	0.017	0.0011	0.0012	0.0067	0.001
p,p'-Dichorodiphenyldicloroethane							0.014	0.0009	0.0011	0.0062	0.0036

	Thresh	old					Station			
Chemical	cAL1	cAL2	TEL/ISQG	PEL	ERL	LOD	11	12	13	22
Metals (mg/kg)	-		•		-	2				
Arsenic	20	100	7.24	41.6		1	5.2	11.4	20.8	19.4
Cadmium	0.4	5	0.676	4.21	12	0.1	0.13	0.2	0.35	1.43
Chromium	40	400	52.3	160	810	0.5	9.1	15.5	38.3	38.9
Copper	40	400	18.7	108	340	2	18.4	24.8	19.9	61.7
Mercury	0.3	3	0.13	0.7	1.5	0.01	0.11	0.04	0.05	0.98
Nickel	20	200	15.9	42.8		0.5	9.4	23.3	32.8	21.1
Lead	50	500	30.2	112	470	2	17.4	74.9	18.6	97.5
Zinc	130	800	124	271	1500	3	33.1	57.6	78.8	199
TBT (μg/kg)	•	-								
Tributyltin compounds	100	1000				5	<0.005	<0.005	<0.005	0.008
DBT (μg/kg)										
Dibutyltin	100	1,000			190	5	0.013	0.015	<0.005	<0.001
PAH (μg/kg)										
Acenaphthene	100	NA	6.7	88.9		1	4.67	13.7	1.88	135
Acenaphthylene	100	NA	5.9	128		1	7.89	16.7	<1	318
Anthracene	100	NA	46.9	245	85	1	14.7	35.8	1.41	586
Benzo[a]anthracene	100	NA	74.8	693	261	1	45.1	37.6	2.11	1200
Benzo[a]pyrene	100	NA	88.8	763	430	1	68.2	52.3	3.12	2090
Benzo[b]fluoranthene	100	NA				1	66.1	51.8	4.3	1970
Benzo[ghi]perylene	100	NA			85	1	52	44.9	5.7	1490

Subtidal samples: Kent project site (Stations 11 - 13 and 22). N/A = Non-applicable

	Thresh	old					Station			
Chemical	cAL1	cAL2	TEL/ISQG	PEL	ERL	LOD	11	12	13	22
Benzo[e]pyrene	100	NA				1	56.5	49.6	4.02	1640
Benzo[k]fluoranthene	100	NA				1	32	23.3	1.4	872
C1-naphthalenes	100	NA			155	1	18.8	66.5	4.84	280
C1-phenanthrene							27.8	58.8	9.28	506
C2-naphthalenes	100	NA			150	1	18.3	72	11.2	250
C3-naphthalenes							19.3	56.9	5.48	236
Chrysene	100	NA	108	846	384	1	39.6	33.2	2.63	1140
Dibenzo[ah]anthracene	10	NA	6.2	135		1	10.4	9.4	<1	303
Fluoranthene	100	NA	113	1494	600	1	76	51.8	4.85	2180
Fluorene	100	NA	21.2	144		1	6.55	16.5	1.63	171
Indeno[1,2,3-cd]pyrene	100	NA			240	1	55.3	39.1	3.94	1660
Naphthalene	100	NA	34.6	391	160	1	14.7	29.6	1.63	206
Perylene	NA	NA	NA	NA		1	50.3	1090	270	636
Phenanthrene	100	NA	86.7	544	240	1	34	49.8	5.79	731
Pyrene	100	NA	153	1398	665	1	84.9	75.8	5.05	2120
ТНС							26.1	8.1	22.1	367
PCBs (μg/kg)										
sum of ICES 7	10	None				0.08	0.00555	0.00321	0.0008	0.15974
Sum of 25 congeners	20	200				0.08	0.01154	0.00754	0.00236	0.39157
Organochlorine pesticides (μg/kg)										
alpha-Hexachlorcyclohexane							<0.0001	<0.0001	< 0.0001	<0.0001
beta-Hexachlorcyclohexane							<0.0001	<0.0001	< 0.0001	<0.0001
gamma-Hexachlorcyclohexane							<0.0001	<0.0001	< 0.0001	0.0001

	Thresh	old					Station			
Chemical	cAL1	cAL2	TEL/ISQG	PEL	ERL	LOD	11	12	13	22
Dieldrin	5		0.715	4.3	2	5	0.0002	0.0013	<0.0001	0.0017
Hexachlorobenzene					20	2	<0.0001	0.0001	<0.0001	0.0001
p,p'- Dichorodiphenyldicloroethylene							0.0012	0.0005	<0.0001	0.0045
p,p'- Dichorodiphenyltrichloroethane	1		1.19	4.77		5	0.0004	0.0003	<0.0001	0.0078
p,p'-Dichorodiphenyldicloroethane							0.0009	0.0006	<0.0001	0.0093

	Thresh	old					Station				
Chemical	cAL1	cAL2	TEL/ISQG	PEL	ERL	LOD	14	15	16	17	18
Metals (mg/kg)	•										
Arsenic	20	100	7.24	41.6		1	5.8	7.5	8.9	5.4	7.2
Cadmium	0.4	5	0.676	4.21	12	0.1	0.07	0.16	0.2	0.21	0.18
Chromium	40	400	52.3	160	810	0.5	8.4	18.6	20.4	28.5	16.9
Copper	40	400	18.7	108	340	2	9.8	19.2	22.8	16.6	20.4
Mercury	0.3	3	0.13	0.7	1.5	0.01	0.04	0.22	0.26	0.05	0.23
Nickel	20	200	15.9	42.8		0.5	7.9	10.3	12.1	23.2	10
Lead	50	500	30.2	112	470	2	8.7	25.6	31.2	15.6	24.9
Zinc	130	800	124	271	1500	3	25.6	61.6	76.4	62.9	61.2
TBT (μg/kg)											
Tributyltin compounds	100	1000				5	<0.005	<0.005	<0.005	<0.005	<0.005
DBT (μg/kg)		-									
Dibutyltin	100	1,000			190	5	0.006	0.014	0.017	<0.005	0.016
PAH (μg/kg)											
Acenaphthene	100	NA	6.7	88.9		1	2.24	55.4	5.9	2.38	25
Acenaphthylene	100	NA	5.9	128		1	5.84	37.2	12	2.06	34.7
Anthracene	100	NA	46.9	245	85	1	8.88	119	18.7	3	67.1
Benzo[a]anthracene	100	NA	74.8	693	261	1	23.1	420	152	9.71	236
Benzo[a]pyrene	100	NA	88.8	763	430	1	35.5	525	147	14	323
Benzo[b]fluoranthene	100	NA				1	31.7	450	167	14.7	285
Benzo[ghi]perylene	100	NA			85	1	27	335	85.9	13.3	224

Subtidal samples: Essex project site (Stations 14 - 18). N/A = Non-applicable.

	Thresh	old					Station		-	•	
Chemical	cAL1	cAL2	TEL/ISQG	PEL	ERL	LOD	14	15	16	17	18
Benzo[e]pyrene	100	NA				1	27	374	122	12.5	243
Benzo[k]fluoranthene	100	NA				1	15.6	204	56.1	7.29	164
C1-naphthalenes	100	NA			155	1	17.3	73.8	12.1	6.74	57
C1-phenanthrene							15.9	202	55	8.96	125
C2-naphthalenes	100	NA			150	1	14	55.5	12.5	7.32	51.7
C3-naphthalenes							13.4	53.9	13.9	6	52.1
Chrysene	100	NA	108	846	384	1	21.4	362	137	9.2	199
Dibenzo[ah]anthracene	10	NA	6.2	135		1	6.11	79.3	31.7	2.57	46.8
Fluoranthene	100	NA	113	1494	600	1	35.7	854	185	18.2	446
Fluorene	100	NA	21.2	144		1	3.47	56.4	8.56	2.29	31.3
Indeno[1,2,3-cd]pyrene	100	NA			240	1	31.7	377	105	14	259
Naphthalene	100	NA	34.6	391	160	1	9.63	53.7	7.45	3.88	36.8
Perylene	NA	NA	NA	NA		1	14.7	170	46	294	119
Phenanthrene	100	NA	86.7	544	240	1	19.6	483	46.1	10.6	195
Pyrene	100	NA	153	1398	665	1	34.2	759	159	17.5	396
ТНС							32.5	121	151	1.6	63.9
PCBs (μg/kg)											
sum of ICES 7	10	None				0.08	0.00107	0.00312	0.00432	0.00093	0.00502
Sum of 25 congeners	20	200				0.08	0.00217	0.0065	0.00891	0.00256	0.01107
Organochlorine pesticides (μg/kg)											
alpha-Hexachlorcyclohexane							<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
beta-Hexachlorcyclohexane							<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001
gamma-Hexachlorcyclohexane							<0.0001	<0.0001	<0.0001	<0.0001	<0.0001

	Thresh	old					Station			-	
Chemical	cAL1	cAL2	TEL/ISQG	PEL	ERL	LOD	14	15	16	17	18
Dieldrin	5		0.715	4.3	2	5	<0.0001	0.0002	0.0003	<0.0001	0.0002
Hexachlorobenzene					20	2	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
p,p'-Dichorodiphenyldicloroethylene							0.0001	0.0003	0.0004	<0.0001	0.0003
p,p'-Dichorodiphenyltrichloroethane	1		1.19	4.77		5	0.0001	0.0004	0.0005	<0.0001	0.0005
p,p'-Dichorodiphenyldicloroethane							<0.0001	0.0006	0.0009	<0.0001	0.0004

	Thresh	old					Station		
Chemical	cAL1	cAL2	TEL/ISQG	PEL	ERL	LOD	19	20	21
Metals (mg/kg)									
Arsenic	20	100	7.24	41.6		1	7.8	8.8	8.2
Cadmium	0.4	5	0.676	4.21	12	0.1	0.17	0.15	0.17
Chromium	40	400	52.3	160	810	0.5	17.7	20	18.7
Copper	40	400	18.7	108	340	2	19	20.3	19.5
Mercury	0.3	3	0.13	0.7	1.5	0.01	0.24	0.27	0.25
Nickel	20	200	15.9	42.8		0.5	10.3	11.3	10.9
Lead	50	500	30.2	112	470	2	28.8	32	28.3
Zinc	130	800	124	271	1500	3	63.2	65.9	64.7
TBT (μg/kg)									
Tributyltin compounds	100	1000				5	<0.005	<0.005	<0.005
DBT (μg/kg)									
Dibutyltin	100	1,000			190	5	0.011	0.012	0.01
PAH (μg/kg)									
Acenaphthene	100	NA	6.7	88.9		1	49.8	17.3	32.6
Acenaphthylene	100	NA	5.9	128		1	44.5	32.4	40.6
Anthracene	100	NA	46.9	245	85	1	94.8	42.9	72.5
Benzo[a]anthracene	100	NA	74.8	693	261	1	269	151	236
Benzo[a]pyrene	100	NA	88.8	763	430	1	395	224	312
Benzo[b]fluoranthene	100	NA				1	307	225	286
Benzo[ghi]perylene	100	NA			85	1	258	163	213

Subtidal samples: Essex project site (Stations 19 - 21). N/A = Non-applicable.

		1							
Benzo[e]pyrene	100	NA				1	262	180	235
Benzo[k]fluoranthene	100	NA				1	203	93.3	150
C1-naphthalenes	100	NA			155	1	83.6	60.3	62.4
C1-phenanthrene							171	100	132
C2-naphthalenes	100	NA			150	1	69.3	50.8	55.1
C3-naphthalenes							60.9	50.3	51.3
Chrysene	100	NA	108	846	384	1	256	148	208
Dibenzo[ah]anthracene	10	NA	6.2	135		1	56.1	36.6	47.8
Fluoranthene	100	NA	113	1494	600	1	577	285	456
Fluorene	100	NA	21.2	144		1	53.8	24.5	39.2
Indeno[1,2,3-cd]pyrene	100	NA			240	1	282	188	249
Naphthalene	100	NA	34.6	391	160	1	56.5	37.1	42.3
Perylene	NA	NA	NA	NA		1	150	83.6	115
Phenanthrene	100	NA	86.7	544	240	1	328	127	243
Pyrene	100	NA	153	1398	665	1	500	253	387
ТНС							85.2	145	109
PCBs (µg/kg)									•
sum of ICES 7	10	None				0.08	0.00354	0.00328	0.00385
Sum of 25 congeners	20	200				0.08	0.0074	0.00711	0.0079
Organochlorine pesticides (µg/kg)									•
alpha-Hexachlorcyclohexane							< 0.0001	< 0.0001	< 0.0001
beta-Hexachlorcyclohexane							< 0.0001	<0.0001	<0.0001
gamma-Hexachlorcyclohexane							<0.0001	<0.0001	< 0.0001
Dieldrin	5		0.715	4.3	2	5	0.0002	0.0003	0.0002
Hexachlorobenzene					20	2	<0.0001	<0.0001	<0.0001
	-								

p,p'-Dichorodiphenyldicloroethylene					0.0003	0.0004	0.0003
p,p'-Dichorodiphenyltrichloroethane	1	1.19	4.77	5	0.0004	0.0004	0.0004
p,p'-Dichorodiphenyldicloroethane					0.0008	0.001	<0.0001

Polybrominated diphenyl ethers (PBDEs) (brominated flame retardants) data are provided below for the 14 stations indicated.

Polybrominated diphenyl ethers (PBDEs) (brominated flame retardants)

	Units	mg/Kg (Dry Weight)	mg/Kg (Dry Weight)	mg/Kg (Dry Weight)	mg/Kg (Dry Weight)
	Method No	*SUB_01	*SUB_01	*SUB_01	*SUB_01
	Limit of Detection	0.00002	0.00002	0.00002	0.00002
	Accreditation	ММО	ММО	ММО	ММО
Station Number	Matrix	BDE17	BDE28	BDE47	BDE66
G01	Sediment	<0.00002	<0.00002	0.00010	<0.00002
G02	Sediment	<0.00002	<0.00002	<0.00002	<0.00002
G10	Sediment	0.00006	0.00003	0.00021	0.000022
G11	Sediment	<0.00002	<0.00002	0.00005	<0.00002
G12	Sediment	<0.00002	<0.00002	0.00008	0.00005
G13	Sediment	<0.00002	<0.00002	<0.00002	<0.00002
G14	Sediment	<0.00002	<0.00002	0.00011	0.00003
G15	Sediment	0.00002	<0.00002	0.00008	<0.00002
G16	Sediment	<0.00002	<0.00002	0.00012	<0.00002
G17	Sediment	<0.00002	<0.00002	<0.00002	<0.00002
G18	Sediment	0.000020	<0.00002	0.00007	<0.00002
G19	Sediment	0.00002	<0.00002	0.00007	<0.00002
G20	Sediment	<0.00002	<0.00002	0.00007	<0.00002
G21	Sediment	<0.00002	<0.00002	0.00009	<0.00002

	Units	mg/Kg (Dry Weight)	mg/Kg (Dry Weight)	mg/Kg (Dry Weight)	mg/Kg (Dry Weight)
	Method No	*SUB_01	*SUB_01	*SUB_01	*SUB_01
	Limit of Detection	0.00002	0.00002	0.00002	0.00002
	Accreditation	ММО	ММО	ММО	ММО
Station Number	Matrix	BDE85	BDE99	BDE100	BDE138
G01	Sediment	<0.00002	0.00008	0.00002	<0.00002
G02	Sediment	<0.00002	<0.00002	<0.00002	<0.00002
G10	Sediment	<0.00002	0.00017	0.00004	<0.00002
G11	Sediment	<0.00002	0.00004	<0.00002	<0.00002
G12	Sediment	<0.00002	0.00004	<0.00002	<0.00002
G13	Sediment	<0.00002	<0.00002	<0.00002	<0.00002
G14	Sediment	<0.00002	0.00012	0.00004	<0.00002
G15	Sediment	<0.00002	0.00003	<0.00002	0.00003
G16	Sediment	<0.00002	0.00012	0.00003	<0.00002
G17	Sediment	<0.00002	<0.00002	<0.00002	<0.00002
G18	Sediment	<0.00002	0.00009	0.00002	<0.00002
G19	Sediment	<0.00002	0.00006	<0.00002	0.00002
G20	Sediment	<0.00002	0.00007	0.00002	<0.00002
G21	Sediment	<0.00002	0.00009	0.00002	<0.00002

	Uni	s mg/Kg (Dry Weight)	mg/Kg (Dry Weight)	mg/Kg (Dry Weight)	mg/Kg (Dry Weight)
	Method N	• *SUB_01	*SUB_01	*SUB_01	*SUB_01
	Limit of Detection	n 0.00002	0.00002	0.0001	0.0001
	Accreditatio	n MMO	ММО	ММО	ММО
Station	Number Matrix	BDE153	BDE154	BDE183	BDE209
G01	Sediment	<0.00002	<0.00002	<0.00002	0.018
G02	Sediment	<0.00002	<0.00002	<0.00002	0.001
G10	Sediment	0.00004	0.000043	0.000066	0.110
G11	Sediment	<0.00002	<0.00002	0.000021	0.008
G12	Sediment	<0.0002	<0.00002	0.000022	0.006
G13	Sediment	<0.0002	<0.00002	0.00003	0.002
G14	Sediment	0.00003	0.00003	0.00002	0.009
G15	Sediment	0.00003	0.00002	0.00005	0.098
G16	Sediment	0.00004	0.000029	0.000054	0.083
G17	Sediment	<0.0002	<0.00002	<0.00002	0.003
G18	Sediment	0.00004	0.000032	0.000030	0.119
G19	Sediment	0.00003	0.00002	0.000039	0.056
G20	Sediment	0.00003	0.00002	0.00004	0.044
G	21 Sediment	0.00003	0.00002	0.000035	0.042

Appendix 14.0 Additional sediment chemistry data

1. Additional sediment contaminant analysis results

Subtidal samples Kent project site (Stations 1 – 7, 8, 9, 10 – 13 and 22). N/A = Non-applicable, NAISS = No Asbestos In Sediment Samples.

Station	LoD	1	2	3	4	5	6	7	8	9	10	11
Other												
Diuron (µg/kg)	0.5	2.15	<0.5	3.44	3.62	0.53	0.93	2.3	2.17	<0.5	3.8	1.34
Dichlorvos (µg/kg)	0.2	<2.00*	<2.00*	<2.00*	<2.00*	<2.00*	<2.00*	<2.00*	<2.00*	<2.00*	<2.00*	<2.00*
Cyanide (free)	0.5	-	<0.5	N/A	N/A	N/A	<0.5	<0.5	<0.5	<0.5	-	-
Cyanide (total)	0.5	<0.5	<0.5	N/A	N/A	N/A	<0.5	<0.5	<0.5	0.6	<0.5	<0.5
Phenol (mg/Kg)	0.1	<0.10	<0.10	N/A	N/A	N/A	0.17	0.25	<0.1	<0.1	<0.1	<0.1
GRO plus BTEX (mg/Kg)	0.2	<0.200	<0.200	N/A	N/A	N/A	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200
MTBE (µg/kg)	20	N/A	N/A	N/A	N/A	N/A	<20	<20	N/A	<20	N/A	N/A
TPH (mg/Kg)	20	41.6	37.8	N/A	N/A	N/A	285	63.5	46.7	164	72	46.8
Asbestos	N/A	NAISS	NAISS	N/A	N/A	N/A	NAISS	NAISS	NAISS	NAISS	NAISS	NAISS

Station	LoD	12	13	22
Other				
Diuron (µg/kg)	0.5	16.4	1.27	2.09
Dichlorvos (µg/kg)	0.2	<2.00*	<2.00*	<2.00*
Cyanide (free) (mg/Kg)	0.5	<0.5	-	<0.5
Cyanide (total) (mg/Kg)	0.5	<0.5	<0.5	<0.5
Phenol (mg/Kg)	0.1	<0.1	<0.1	0.3
GRO plus BTEX (mg/Kg)	0.2	<0.200	<0.200	<0.200
MTBE (µg/kg)	20	N/A	N/A	<20
TPH (mg/Kg)	20	68.3	44.5	226

Station	LoD	12	13	22
Other				
Asbestos	N/A	NAISS	NAISS	AM

Subtidal samples Essex project site (Stations 14 - 21). N/A = Non-applicable, NAISS – No Asbestos In Sediment Samples, AM = Amosite.

Station	LoD	14	15	16	17	18	19	20	21
Other									
Diuron (µg/kg)	<0.5	<0.5	0.85	1.24	<0.5	0.86	0.76	0.73	0.76
Dichlorvos (µg/kg)	<0.2	<2.00*	<2.00*	<2.00*	<2.00*	<2.00*	<2.00*	<2.00*	<2.00*
Cyanide (free)	0.5	-	-	<0.5	-	-	-	<0.5	-
Cyanide (total)	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Phenol (mg/Kg)	0.1	<0.10	<0.10	<0.10	<0.10	0.12	0.1	<0.10	<0.10
GRO plus BTEX (mg/Kg)	0.2	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200
MTBE (µg/kg)	20	N/A							
TPH (mg/Kg)	20	44.3	52.2	55	40.5	64	57.8	54.7	72.9
Asbestos	N/A	NAISS							

